Abstract:
A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
Abstract:
In part, the invention relates to optical caps having at least one lensed surface configured to redirect and focus light outside of the cap. The cap is placed over an optical fiber. Optical radiation travels through the fiber and interacts with the optical surface or optical surfaces of the cap, resulting in a beam that is either focused at a distance outside of the cap or substantially collimated. The optical elements such as the elongate caps described herein can be used with various data collection modalities such optical coherence tomography. In part, the invention relates to a lens assembly that includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film or cover. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. The film can surround a portion of the beam director.
Abstract:
An apparatus comprising a torque wire connected to an imaging probe; and a torque limiter defining a bore, a first end of the torque limiter being in mechanical communication with a motor, a second end of the torque limiter being in mechanical communication with the torque wire, the torque wire being disposed through the bore of the torque limiter. The torque limiter comprises a member defining at least one cutout which causes the torque limiter to break when rotational force on the torque wire exceeds a predetermined amount, thereby decoupling the motor from the torque wire.
Abstract:
A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
Abstract:
Aspects of the disclosure provide for an x-ray detection device for detecting radiation scattered off of a target during an imaging procedure and generating temporal data indicating the time of occurrence of a pulse of radiation emitted towards the target. The temporal data can be sent to a host device and used to timestamp images generated from the pulses of radiation. The x-ray detection device is portable and can be installed in a catheterization laboratory or imaging environment to detect the occurrence of radiation, without occluding or partially occluding the beam source. Aspects of the disclosure also provide for a system for receiving temporal data generated by the x-ray detection device, and accurately tagging received image frames based on the temporal data.
Abstract:
Aspects of the disclosure relate to systems, methods, and algorithms to train a machine learning model or neural network to classify OCT images. The neural network or machine learning model can receive annotated OCT images indicating which portions of the OCT image are blocked and which are clear as well as a classification of the OCT image as clear or blocked. After training, the neural network can be used to classify one or more new OCT images. A user interface can be provided to output the results of the classification and summarize the analysis of the one or more OCT images.
Abstract:
In part, the disclosure relates to method of displaying a representation of an artery. The method may include storing an intravascular image dataset in a memory device of a diagnostic imaging system, the intravascular image dataset generated in response to intravascular imaging of a segment of an artery; automatically detecting lumen boundary of the segment on a per frame basis; automatically detecting EEL and displaying a stent sizing workflow. In part, the disclosure also relates to automatically detecting one or more regions of calcium relative to lumen boundary of the segment; calculating an angular or circumferential measurement of detected calcium for one or more frames; calculating a calcium thickness of detected calcium for one or more frames; and displaying the calcium thickness and the angular or circumferential measurement of detected calcium for a first frame of the one or more frames.
Abstract:
In part, the disclosure relates to methods, and systems suitable for evaluating image data from a patient on a real time or substantially real time basis using machine learning (ML) methods and systems. Systems and methods for improving diagnostic tools for end users such as cardiologists and imaging specialists using machine learning techniques applied to specific problems associated with intravascular images that have polar representations. Further, given the use of rotating probes to obtain image data for OCT, IVUS, and other imaging data, dealing with the two coordinate systems associated therewith creates challenges. The present disclosure addresses these and numerous other challenges relating to solving the problem of quickly imaging and diagnosis a patient such that stenting and other procedures may be applied during a single session in the cath lab.
Abstract:
In part, the disclosure relates to determining a stent deployment location and other parameters using blood vessel data. Stent deployment can be planned such that the amount of blood flow restored from stenting relative to an unstented vessel increases one or more metrics. An end user can specify one or more stent lengths, including a range of stent lengths. In turn, diagnostic tools can generate candidate virtual stents having lengths within the specified range suitable for placement relative to a vessel representation. Blood vessel distance values such as blood vessel diameter, radius, area values, chord values, or other cross-sectional, etc. its length are used to identify stent landing zones. These tools can use or supplement angiography data and/or be co-registered therewith. Optical imaging, ultrasound, angiography or other imaging modalities are used to generate the blood vessel data.
Abstract:
In part, the disclosure relates to systems and methods of detecting struts in a blood vessel. In one embodiment, an intravascular data collection system and an intravascular data collection probe are used. An exemplary method may include one or more of the following steps converting an image of a blood vessel into an image mask, the image includes struts of a bioresorbable scaffold; inverting the image mask to create an inverted image mask, detecting an insular group of bright/ signal containing pixels; and filtering the insular group of bright / signal containing pixels using one or more morphological filters to identify candidate struts; and validating the candidate struts to identify one or more struts of the bioresorbable scaffold.