Abstract:
Products comprising labile compounds, such as polyunsaturated fatty acids, and having first and second encapsulates are disclosed. A first encapsulant can be a spray dried coating and the second encapsulant can be a prill coating. Methods of making the same are provided.
Abstract:
Disclosed are novel acyl-CoA synthetases and novel acyltransferases, nucleic acid molecules encoding the same, recombinant nucleic acid molecules and recombinant host cells comprising such nucleic acid molecules, genetically modified organisms (microorganisms and plants) comprising the same, and methods of making and using the same. Also disclosed are genetically modified organisms (e.g., plants, microorganisms) that have been genetically modified to express a PKS-like system for the production of PUFAs (a PUFA PKS system or PUFA synthase), wherein the organisms have been modified to express an acyl-CoA synthetase, to express an acyl transferase, to delete or inactivate a fatty acid synthase (FAS) expressed by the organism, to reduce competition for malonyl CoA with the PUFA synthase or to increase the level of malonyl CoA in the plant or plant cell, and in one aspect, to inhibit KASII or KASIII. Additional modifications, and methods to make and use such organisms, in addition to PUFAs and oils obtained from such organisms, are disclosed, alone with various products including such PUFAs and oils.
Abstract:
Disclosed are novel acyl-CoA synthetases and novel acyltransferases, nucleic acid molecules encoding the same, recombinant nucleic acid molecules and recombinant host cells comprising such nucleic acid molecules, genetically modified organisms (microorganisms and plants) comprising the same, and methods of making and using the same. Also disclosed are genetically modified organisms (e.g., plants, microorganisms) that have been genetically modified to express a PKS-like system for the production of PUFAs (a PUFA PKS system or PUFA synthase), wherein the organisms have been modified to express an acyl-CoA synthetase, to express an acyl transferase, to delete or inactivate a fatty acid synthase (FAS) expressed by the organism, to reduce competition for malonyl CoA with the PUFA synthase or to increase the level of malonyl CoA in the organism, and in one aspect, to inhibit KASII or KASIII. Additional modifications, and methods to make and use such organisms, in addition to PUFAs and oils obtained from such organisms, are disclosed, alone with various products including such PUFAs and oils.
Abstract:
The present invention includes a palatable, stable composition comprising a biomass hydrolysate emulsion for incorporation, into, or used as, nutritional products, cosmetic products or pharmaceutical products. Preferred sources for biomass are microbial sources, plant sources and animal sources. The present invention also provides methods for making such compositions, specifically, a method for producing a product comprising a nutrient, particularly a long chain polyunsaturated fatty acid, comprising hydrolyzing a biomass comprising the nutrient and emulsifying the hydrolyzed biomass. Such compositions and methods are useful, for example, for increasing intake of nutrients such as omega-3 long chain polyunsaturated fatty acids having 18 or more carbons.
Abstract:
Disclosed are novel oxylipins, referred to herein as docosanoids, that are derived from C22 polyunsaturated fatty acids, and method of making and using such oxylipins. Also disclosed is the use of docosapentaenoic acid (C22:5n-6) (DPAn-6), docosapentaenoic acid (C22:5n-3) (DPAn-3), and docosatetraenoic acid (DTAn-6: C22:4n-6) as substrates for the production of novel oxylipins, and to the oxylipins produced thereby. Also disclosed is the use of DPAn-6, DPAn-3, DTAn-6, and/or the oxylipins derived therefrom, and/or novel docosanoids derived from the structures of C22 fatty acids, in therapeutic and nutritional or cosmetic applications, and particularly as anti-inflammatory or anti-neurodegenerative compounds. The invention also relates to novel ways of producing long chain polyunsaturated acid (LCPUFA)-rich oils and compositions that contain enhanced and effective amounts of LCPUFA-derived oxylipins, and particularly, docosanoids.
Abstract:
Disclosed are a fatty acid synthase (FAS) from Schizochytrium, biologically active fragments and homologues thereof, a nucleic acid sequence encoding such FAS, fragments and homologues thereof, the gene encoding Schizochytrium FAS, host cells and organisms that recombinantly express the FAS, host cells and organisms in which the expression and/or activity of the endogenous FAS has been attenuated, and various methods for making and using any of these proteins, nucleic acid molecules, genes, host cells or organisms.
Abstract:
Methods are disclosed for extracting and separating polar lipids, including phospholipids, from materials containing oil, polar lipids, protein, ash, and/or carbohydrate, such as egg yolks and other phospholipid-containing materials as depicted in Figure (1). In particular, methods for extracting phospholipids from phospholipid-containing materials through the use of an aliphatic alcohol and control of temperature are disclosed. Using these methods, phospholipids in the aqueous liquid fraction will be efficiently separated and will precipitate readily, and can be subjected to separation for improved purity.
Abstract:
Methods for production of highly unsaturated fatty acids by marine microorganisms, including the heterotrophic marine dinoflagellate Crypthecodinium, using low levels of chloride ion are disclosed. Specifically, methods of increasing production of highly unsaturated fatty acids by marine microorganisms while growing in low chloride media by manipulating sodium ion and potassium ion levels. The invention also relates to methods of production of highly unsaturated fatty acids by marine organisms at low pH levels, and includes methods for generation of low pH tolerant strains.
Abstract:
A method of treating a neurological disorder comprises administering to a person affected from such a disorder a microbial oil comprising DHA, a microbial oil comprising ARA or a combination of DHA and ARA oils in an amount sufficient to elevate the levels of circulating DHA and/or ARA in the person's blood to at least normal levels.
Abstract:
Methods are provided for generating highly diverse mixtures of compounds which may be screened for biological activities. Once the activity is found, the component of the mixture which is responsible for the activity can be isolated by fractionation and assay for the biological activity. Polyhydroxylated organic monomers and oligomers are used as starting materials for generating the libraries.