Abstract:
Apparatus and methods to measure capacitance changes for a touch-sensitive capacitive matrix are described. Charge-removal circuits and measurement techniques may be employed to cancel deleterious effects of parasitic capacitances in the touch-sensitive capacitive matrix. Capacitively switching a supply during timed charge removal may be used to cancel unwanted effects due to clock jitter. The apparatus and methods can improve signal-to-noise characteristics, sensitivity, and/or dynamic range for capacitive measurements relating to touch-sensitive capacitive devices.
Abstract:
Applicant has recognized and appreciated the desirability of powering an actuator using power drawn from one or both of an energy storage device and a spindle motor. In some embodiments, following a loss of external power to a hard disk drive, the hard disk drive (or one or more components thereof) determines whether to provide the actuator with power drawn from the spindle motor or to provide the actuator with power drawn from the spindle motor and from the energy storage device. In some embodiments, the hard disk drive (or the component(s) thereof) may additionally or alternatively determine whether to charge the energy storage device using power drawn from the spindle motor. In some embodiments, the drive may make the determinations based on an amount of power that the actuator is to consume at a time and an amount of power that the spindle motor can provide at the time.
Abstract:
Embodiments provide a method and system of text independent speaker recognition with a complexity comparable to a text dependent version. The scheme exploits the fact that speech is a quasi-stationary signal and simplifies the recognition process based on this theory. The modeling allows the speaker profile to be updated progressively with the new speech sample that is acquired during usage time.
Abstract:
Ghosting of images can be produced by the use anaglyph techniques to produce stereoscopic images. Ghost effects can be produced when filtering is applied to images by displays such as televisions or monitors. Techniques and apparatus are described for reducing or cancelling ghost effects. Anaglyph ghost reduction information can be produced to reduce or cancel ghost effects.
Abstract:
In an embodiment, a transmitter includes a transmission path configurable to generate first pilot clusters in response to a matrix, each first pilot cluster including a respective first pilot subsymbol in a first cluster position and a respective second pilot subsymbol in a second cluster position such that a vector formed by the first pilot subsymbols is orthogonal to a vector formed by the second pilot subsymbols, the matrix having a dimension related to a number of cluster positions in each of the first pilot clusters. For example, where such a transmitter transmits simultaneous orthogonal-frequency-division-multiplexed (OFDM) signals (e.g., MIMO-OFDM signals) over respective channels that may impart inter-carrier interference (ICI) to the signals due to Doppler spread, the pattern of the pilot symbols that compose the pilot clusters may allow a receiver of these signals to estimate the responses of these channels more accurately than conventional receivers.
Abstract:
A method of calculating a Cyclic Redundancy Check (CRC) value for a multi-bit input data word, using a defined generator polynomial is disclosed. The method includes the steps of: serially shifting at least a portion of the input data word into a register; XORing the contents of the register with the generator polynomial if the LSB of the register is null1null; shifting the contents of the register right by one position; shifting into the MSB position of the register a new bit of the input data word, having been XORed with the LSB of the register; repeating the previous step for all message data bits; shifting into the register a number of null0nulls equal to the length of the generator polynomial; reading from the register the calculated CRC value. Apparatus for performing the method is also disclosed.
Abstract:
A semiconductor package having a substrate; a semiconductor die attached to the substrate; a housing attached to the substrate and arranged to surround the semiconductor die; and solidified molding material arranged around the housing and adhering to the substrate to secure the housing in position on the substrate. A method of manufacturing the package is also disclosed.
Abstract:
Disclosed herein is a wireless power reception system that utilizes a switched capacitor DC-DC voltage converter to charge a load. Current sensing circuits described herein enable the measurement of the input current to the switched capacitor DC-DC voltage converter while being relatively insensitive to temperature variation. Voltage/current sensing circuits described herein enable the selective measurement of load voltage, high side load current, and low side load current. One of the current sensing circuits may be used together with one of the voltage/current sensing circuits in a single device, or the current sensing circuits and voltage/current sensing circuits may be used separately in different devices.
Abstract:
A method for operating an electronic device, the method including: displacing a rollable touchscreen to a first position along a first direction, a first side of the rollable touchscreen being mounted in a housing, the rollable touchscreen being configured to be rolled into or unrolled out of the housing along the first direction, detecting an active electrode at a first location on the rollable touchscreen, the active electrode being mounted in the housing, and determining the first position of the rollable touchscreen based on the first location, the first positing being indicative of a fractional amount of the rollable touchscreen outside the housing.
Abstract:
The present disclosure is directed to a contactless card including an actuation security structure that is actuated to provide authorization in accessing identifying information on an integrated circuit within the contactless card. In at least one embodiment, the actuation security structure includes a pair of conductive layers and a pair of electrodes. Ends of the pair of conductive layers overlap respective ones of the pair of electrodes. The ends of the pair of conductive layers are at and in a first elastically deformable region and the respective ones of the pair of electrodes are at and in a second elastically deformable region. An owner of the contactless card may provide authorization to access the identification information on the contactless card by applying force to both the first and second elastically deformable regions inward resulting in the ends of the conductive layers moving into electrical communication with the pair of electrodes.