Abstract:
A connector assembly having a first connector portion, a second connector portion, and connector position assurance structure. An anti-deflection tab and an anti-deflection protrusion are employed in the connector assembly to control movement of the connector position assurance structure relative to the remainder of the connector assembly.
Abstract:
The present teachings provide for a connector including a first body and an assurance body. The first body defines a first locking member, a cavity and a slot. The cavity accepts a terminal inserted therein to a first distance. The slot extends into the first body and intersects the cavity. The first locking member is configured to prevent withdrawal of the terminal when the terminal is inserted to the first distance. The assurance body is movable between a preset and a full set position within the slot, and includes a reinforcing member and a second locking member. The full set position, the reinforcing member limits movement of the first locking member to prevent the withdrawal of the terminal, and the second locking member extends into the cavity to prevent withdrawal of the terminal independent of the first locking member.
Abstract:
A bused electrical center and a method for its construction. The bused electrical center includes a plurality of bus bars, which are housed between a bus bar housing and a filter housing, a filter device and a plurality of interface terminals that couple leads on the filter device to isolation tabs formed on the bus bars. No solder is employed to electrically or mechanically couple the interface terminals to the leads or to the isolation tabs such that the interface terminals are the sole means for electrically connecting the isolation tabs and the leads.
Abstract:
A connector assembly having a first connector portion, a second connector portion, and connector position assurance structure. An anti-deflection tab and an anti-deflection protrusion are employed in the connector assembly to control movement of the connector position assurance structure relative to the remainder of the connector assembly.
Abstract:
A cantilever system comprises a snapping body configured to ensure a persistent contact with a receiving body. The snapping body includes a supporting body extending from the snapping body, a step extending from the supporting body, the step configured to lock the snapping body and the receiving body in an engaged position, and a constant contact protrusion extending into the step, wherein the constant contact protrusion is configured to maintain engagement of the snapping body and the receiving body.
Abstract:
A liquid-cooled charging system for a vehicle is configured to dissipate heat generated during charging (including fast-charging) of an electrically-powered. vehicle. The liquid-cooled charging system includes a charging assembly having an interface assembly configured to support a charging plug of a charging station and an energy transfer assembly configured to electrically couple the charging station to the battery of the vehicle during charging. Components of the charging assembly and energy transfer assembly also define a fluid circuit. A coolant system of the liquid-cooled charging system is fluidly connected to the fluid circuit, allowing coolant to flow through the fluid circuit to dissipate heat from the charging assembly components during charging of the vehicle,
Abstract:
An electrical connector assembly includes a connector defining a front end and an opposing rear end. The connector includes a cavity defined therein, the cavity extending from the front end to the rear end and configured to receive at least one of a terminal or an electrical wire therein. The assembly further includes a plug at least partially disposed in the cavity and ultrasonically welded to the connector.
Abstract:
Some embodiments are directed to an apparatus for detecting and suppressing DC electric arcs at a component, and are particularly adapted for vehicle wiring harnesses. The apparatus can include a detector circuit electrically connected to input and output terminals so as to be electrically connected in parallel to the component, the detector circuit being configured to detect a significant voltage spike across the component upon the component actuating between open and closed positions. The detector circuit can also be configured to transmit a control signal upon detecting the significant voltage spike. The detector circuit can include multiple circuit elements, enabling both the detection of the significant voltage spike and the transmission of the control signal, that are directly electrically connected to each other. A switching circuit conducts electricity from the power source side of the component to the load side of the component upon receipt of the control signal.
Abstract:
A self-aligning busbar assembly includes a housing, a busbar having a first terminal connecting end, a second terminal connecting end, and a jog portion disposed therebetween, and a front holder coupled to the housing and the busbar. The front holder includes an inner wall defining a busbar receiving aperture to receive at least a portion of the busbar, and at least one flexible tab extending inwardly from the inner wall into the busbar receiving aperture. The at least one flexible tab is configured to bias and center the at least a portion of the busbar within the busbar receiving aperture. At least one clearance is defined in the busbar receiving aperture between the inner wall and the busbar and is configured to enable at least one of the first and second terminal connecting ends to move to account for tolerances and/or variances during installation of the busbar assembly.