Abstract:
The present invention relates to a method for manufacturing a nickel-based catalyst for steam carbon dioxide reforming reaction (SCR) of natural gas and, more particularly, to a method for manufacturing a nickel-based catalyst that is represented by Ni/η-Al_2O_3 manufactured by repeatedly impregnating nickel into a spherical eta-alumina support, which has many acid points formed thereon, and drying the impregnated product dozens of times, thus supporting the nickel at high density. A catalyst manufactured by the manufacturing method according to the present invention exhibits excellent catalytic activity even under the severe conditions of high temperature and high pressure when applied to steam carbon dioxide reforming reaction, and has little carbon deposited thereon owing to the excellent durability of the catalyst.
Abstract:
The present invention relates to an improved perovskite-based composite oxide catalyst in which a transition metal is dipped in order to improve the selectivity of hydrogen and remarkably decrease the selectivity of methane and carbon monoxide as byproducts. Moreover, the present invention relates to a method for selectively producing hydrogen by means of the C-H decomposition and C-O maintenance of glycerol using the metal oxide catalyst. The improved perovskite-based catalyst (NixMy/LaCexAl1-xO3) in which nickel and a second transition metal are dipped is applied to the reaction of glycerol so as to maintain the high conversion rate of glycerol and the high selectivity and yield of hydrogen. Accordingly, the catalyst can be usefully used as a catalyst for converting glycerol which is generated during a biodiesel process into high value-added hydrogen and as a catalyst for a reaction process of synthesizing high value-added hydrogen.