Abstract:
본 발명은 인공아가미용 멤브레인 장치 및 이를 포함하는 산소 분리 장치에 관한 것으로서, 보다 상세하게는 수중 용존 산소를 분리하여 인간의 호흡에 사용할 수 있도록 하여, 산소탱크와 같은 산소공급장비를 구비하지 않고 무한하게 수중 활동을 할 수 있으며, 수중에 있는 산소의 분리 효율을 향상시켜 보다 컴팩트하게 장치를 구성할 수 있어 휴대가 용이한 인공아가미용 멤브레인 장치 및 이를 포함하는 산소 분리 장치에 관한 것이다.
Abstract:
The present invention relates to a hollow fiber membrane module. The hollow fiber membrane module includes a flow part flowing in which fluid flows in through one end and the other end is sealed; a filtration part which surrounds the flow part to be parallel to the flow part and includes a plurality of hollow fiber for filtering the air by gas exchange between air in the fluid supplied from the flow part and internal inhaled gas; an air-collecting part which is installed in the end of the filtration part and collects the air filtered from the filtration part; a case for sealing the filtration part by installing the filtration part between the case and the flow part; a discharge valve for discharging the fluid from the filtration part. The discharge valve is 1-way valve making the fluid flow only outwards from the inside of the case. By the present invention, energy consumption for fluid inflow can be saved by discharging the fluid after filtration and the effectiveness of filtration can be improved.
Abstract:
PURPOSE: An induction solute recovery device integrated with the forward osmosis process is provided to maximize the efficiency of forward osmosis desalination process by efficiently recovering ammonia and carbon dioxide in an ammonium salt by using no additional water or remarkably little water of about 1/100 in the forward osmosis series processes. CONSTITUTION: An induction solute recovery device integrated with the forward osmosis process comprises a gas creation part(10); a first charge unit(22); a second charge unit(32); a first barrier(26) and a second barrier(36). The first charge unit is positioned over the gas creation part, and comprises at least one between filler or coil. The second charge unit is positioned over the first charge unit, and comprises at least one between filler or coil. The first barrier is positioned between the gas creation part and the first charge unit. The second barrier is positioned between the first charge unit and the second charge unit. The first and second barriers include a hole(H) in the center respectively. The first and second barriers incline to the down direction around the hole respectively.
Abstract:
PURPOSE: A forward osmotic seawater desalinating apparatus and a method for the same are provided to improve the separating efficiency of hazardous materials from seawater and to rapidly obtain desalinated water based on low quantity of energy. CONSTITUTION: A forward osmotic seawater desalinating apparatus includes a forward osmosis membrane reactor(10) and an ultrasound wave reactor(20). The forward osmosis membrane reactor includes a seawater space(12) and an osmosis inducing solution space(13). The osmosis inducing solution obtaining ammonium hydrogen carbonate(NH_4HCO_3) is arranged in the osmosis inducing solution space. The seawater space and the osmosis inducing solution space are separated by a forward osmosis membrane(11). The ultrasound wave reactor includes an ultrasound wave emitting unit(21). A cavitation phenomenon is induced in the osmosis inducing solution by ultrasound wave from the ultrasound wave reactor.
Abstract:
본 발명은 염수-담수간의 염도차를 이용한 하이브리드 발전방법에 관한 것으로서, 염수-담수간의 염도차를 이용한 하이브리드 발전방법에 있어서, 상기 염수에서, 역삼투방식으로, 상기 염수에 포함된 담수 중 일부를 분리시키는 역삼투 담수화단계; 및 상기 염수와 상기 역삼투 담수화단계를 거친 염수간의 농도차에 의해 발생한 삼투압에 의하여 증가된 유량을 이용하여, 전력을 생산하는 삼투발전단계;를 포함하여 이루어지는 것을 특징으로 한다. 본 발명에 의하면, 종래와 달리, 역삼투방식(Reverse Osmosis, RO)과 압력지연삼투방식 (Pressure Retarded Osmosis, PRO)을 효과적으로 결합함으로써, 전력생산 및 담수화를 하나의 공정으로 진행할 수 있을 뿐만 아니라, 역삼투 담수화공정에서 배출되는 고농도의 염수 흐름이 가지는 화학적 에너지를 전력발전에 활용할 수 있어 에너지효율을 극대화할 수 있는 장점이 있다.
Abstract:
PURPOSE: A respiratory device is provided to use hollow fiber as a respiratory device and to improve air filtration rate. CONSTITUTION: A respiratory device comprises: a filter section which filters air contained in fluid and consists of a plurality of hollow fibers having different air filtration rate; a respiratory unit(140) in which one end is connected to the filter section in order to provide the filtered air from the filter section to the human body and the other end is connected to the mouth portion of the human body; and a pressure pump(150) which lowers the pressure of the respiratory unit than the outside of the filter section.
Abstract:
본 발명은 액체가 모세관을 통과하는 시간측정장치 및 통과시간 측정방법 및 그 측정값을 이용한 점도계산방법에 관한 것으로, 더 상세하게는 모세관 현상을 액체 이송에 이용하되 중력방향으로 세워진 모세관을 사용하고 상기 모세관의 두 지점에서 액체의 통과시간을 측정하도록 함으로써 모세관압을 별도로 측정하는 번거로움 없이 모세관을 통과하는 시간만으로 간단하게 점도를 측정할 수 있게 한 것이다. 특히, 상기 모세관에는 전극을 설치하여 서로 액체의 통과시 통전되는 전압의 변동에 의해 통과시간을 측정하되, 한 지점에 다수의 전극을 설치하여 각 전극 사이의 통전유무를 간단하게 확인하여 설치간격을 통과하는 액체의 통과시간을 측정하여 점도계산이 가능하도록 한 액체가 모세관을 통과하는 시간 측정장치 및 측정방법 및 그 측정값을 이용한 점도계산방법에 관한 것이다. 본 발명에 따른 시간측정값을 이용한 점도계산방법은, 중력방향으로 세워진 모세관 입구에 유체관의 액체를 접촉시켜 모세관현상에 의해 액체가 모세관에 빨려들어가게 하고, 상기 모세관의 상하층 두 지점에 측정부를 설치하여 빨려들어간 액체가 모세관의 각 측정부를 통과하는 시간측정값을 이용한 점도계산방법에 있어서, 하기 수학식5에 의해 계산되어진다. 수학식 5
v : 동점도, h 1 ,
h 2 : 액체가 측정부에 도달한 모세관 높이 D h : 모세관의 직경 t : 시간, g : 중력가속도 점도, 모세관, 전극, 통과시간, 전압변동
Abstract:
PURPOSE: A jig of microscope for viewing a side is provided to observe the upper part of specimen as well as the side of the specimen by modifying a cradling structure. CONSTITUTION: A frame(100) is placed on a ground or a working table. A vertical bar(200) is installed on the top of the frame. A holder(300) is inserted into the vertical bar, and moves up and down according to the vertical bar. A horizontal bar(400) is installed in a holder in the horizontal direction. A rotary bar(500) is installed in the end of the horizontal bar in order to be folded.
Abstract:
PURPOSE: A device for discriminating between cancerous and normal cells is provided to be effectively used in cell discernment by using the difference between the bulge of normal cell with lots of scaffold protein and the bulge of cancer cell with small scaffold protein. CONSTITUTION: A device(10) for discriminating between cancerous and normal cells comprises a fluidic channel(20), a diaphragm(30), and a control channel(40). A flow channel(21) in which the fluid containing a cell on the surface of the fluidic channel. The diaphragm is laminated at the upper part of the fluidic channel. An inlet and an outlet are formed in the control channel to correspond to both ends of the fluidic channel.