Abstract:
Embodiments of a system and methods for localized high density substrate routing are generally described herein. In one or more embodiments an apparatus includes a medium, first and second circuitry elements, an interconnect element, and a dielectric layer. The medium can include low density routing therein. The interconnect element can be embedded in the medium, and can include a plurality of electrically conductive members therein, the electrically conductive member can be electrically coupled to the first circuitry element and the second circuitry element. The interconnect element can include high density routing therein. The dielectric layer can be over the interconnect die, the dielectric layer including the first and second circuitry elements passing therethrough.
Abstract:
A heat dissipation device that includes a base plate having a plurality of substantially circular channels which are substantially concentrically arranged; and a fluid distribution structure adjacent the base plate, wherein the fluid distribution structure has a plurality of inlet conduits extending substantially radially from a central area with each of the plurality of inlet conduits having at least one fluid delivery port extending through the fluid distribution structure to at least one base plate circular channel, and wherein the fluid distribution structure has a plurality of outlet zones defined between adjacent inlet conduits with each of the plurality of outlet zones having at least one fluid removal port extending through the fluid distribution structure to at least one base plate circular channel.
Abstract:
Discussed generally herein are devices that include high density interconnects between dice and techniques for making and using those devices. In one or more embodiments a device can include a bumpless buildup layer (BBUL) substrate including a first die at least partially embedded in the BBUL substrate, the first die including a first plurality of high density interconnect pads. A second die can be at least partially embedded in the BBUL substrate, the second die including a second plurality of high density interconnect pads. A high density interconnect element can be embedded in the BBUL substrate, the high density interconnect element including a third plurality of high density interconnect pads electrically coupled to the first and second plurality of high density interconnect pads.
Abstract:
An example includes a die package including a microelectronic die having a lower die surface, an upper die surface parallel to the lower die surface, and a die side, the microelectronic die including an active region and an inactive region. The example optionally includes a heat spreader having a lower heat spreader surface, an upper heat spreader surface parallel to the lower heat spreader surface, and at least one heat spreader side, the heat spreader disposed on the upper surface of the microelectronic die in thermal communication with the inactive region of the die and electrically insulated from the active region. The example optionally includes an encapsulation material encapsulating the die side and the heat spreader side and lower heat spreader surface, the encapsulation material including a lower surface substantially parallel to the die lower surface and an upper surface substantially parallel to the die upper surface.
Abstract:
An apparatus is described. The apparatus includes a packaged semiconductor device. The packaged semiconductor device having an integrated heat spreader, wherein, a boiling enhancement structure exists on the integrated heat spreader without a block mass residing between the boiling enhancement structure and the integrated heat spreader. The boiling enhancement structure has a structured non-planar surface to promote bubble nucleation in an immersion cooling system.
Abstract:
The substrate of an integrated circuit component comprises a cutout that extends fully or partially through the substrate. An edge of a photonic integrated circuit (PIC) in the integrated circuit component is coplanar with a wall of the cutout or extends into the cutout. An optical fiber in an FAU is aligned with a waveguide within the PIC and the FAU is attached to the PIC edge and an attachment block. The attachment block provides an increased attachment surface area for the FAU. A portion of the FAU extends into the substrate cutout. A stress relief mechanism can secure the fiber optic cable attached to the FAU to the substrate to at least partially isolate the FAU-PIC attachment from external mechanical forces applied to the optical fiber cable. The integrated circuit component can be attached to a socket that comprises a socket cutout into which an FAU can extend.
Abstract:
Embodiments disclosed herein include optical packages. In an embodiment, an optical package comprises a package substrate, where the package substrate comprises a recessed edge. In an embodiment, a compute die is on the package substrate, and an optics die on the package substrate and overhanging the recessed edge of the package substrate. In an embodiment, an integrated heat spreader (IHS) is over the compute die and the optics die. In an embodiment, a lid covers the recess in the package substrate.
Abstract:
Embodiments include semiconductor packages and a method to form such packages. A semiconductor package includes first and second bottom dies on a package substrate. The semiconductor package includes first top dies on the first bottom die, second top dies on the second bottom die, and a pedestal on the first and second bottom dies. The pedestal comprises a high thermal conductive material and is positioned on a region of top surfaces of the first and second bottom dies. The semiconductor package includes an encapsulation layer over the first and second bottom dies, and surrounds the first and second top dies and the pedestal. The semiconductor package includes a TIM over the first and second top dies, pedestal, and encapsulation layer, and an integrated heat spreader (IHS) over the TIM. The pedestal is on a periphery region of the top surfaces of the first and second bottom dies.
Abstract:
A multi-chip package includes a substrate (110) having a first side (111), an opposing second side (112), and a third side (213) that extends from the first side to the second side, a first die (120) attached to the first side of the substrate and a second die (130) attached to the first side of the substrate, and a bridge (140) adjacent to the third side of the substrate and attached to the first die and to the second die. No portion of the substrate is underneath the bridge. The bridge creates a connection between the first die and the second die. Alternatively, the bridge may be disposed in a cavity (615, 915) in the substrate or between the substrate and a die layer (750). The bridge may constitute an active die and may be attached to the substrate using wirebonds (241, 841, 1141, 1541).
Abstract:
Embodiments of a microelectronic assembly comprise a package substrate, a first integrated circuit (IC) die, a second IC die between the first IC die and the package substrate, a dielectric material between the first IC die and the package substrate, and a plurality of vias through the dielectric material, the vias coupling the first IC die and the package substrate. The microelectronic assembly is in a space defined by three mutually orthogonal axes, a first axis, a second axis and a third axis; the package substrate, the first IC die and the second IC die are mutually parallel in first planes defined by the first axis and the third axis; the vias are in one or more second planes defined by the second axis and the third axis; and the vias are inclined at an angle not equal to ninety degrees around the first axis.