Abstract:
Various aspects are provided related to techniques for signal extension (SE) signaling. A signal extension (SE) duration for a data unit can be identified from a set of at least three possible SE durations. A single signaling bit in the data unit can be used to indicate the identified SE duration from the set of at least three possible SE durations to a receiver of the data unit. Problem to be solved: Signalling of Signal Extension (SE) length used by an Access Point in Downlink of a IEEE 802.11ax. SE also called Frame Extension or Packet Extension are dummy bits padded at the end of a frame or PPDU that give a terminal (STA) more time to respond on top of the 16us SIFS duration. The length of the Symbol Extension is implicitly signalled through the Length field (L_LENGTH) in the legacy signal field (L-SIG). However due to the quantization noise of the L_LENGTH field, an ambiguity remains for some SE durations that prevents the STA from uniquely determining from the received L_LENGTH the number of data symbols and the SE length. For these reasons, the present application proposes to send a so-called SE disambiguation bit by indicating to which subset of SE lengths, the used SE belongs to.
Abstract:
Methods, systems, and devices are described for wireless communication at a wireless device. An access point (AP) may identify a pending communication for a wireless device and transmit a wakeup message comprising a device specific sequence to a companion radio of the device. The device may receive the wakeup message using the companion radio, decode the message to obtain a device specific sequence, and activate a primary radio. The wakeup message may include a preamble, a signal field, and a data field. In some cases, the wireless device may demodulate the wakeup message using ON-OFF keying (OOK) modulation. The AP and the device may then exchange data using the primary radio.
Abstract:
Methods and apparatus for allocating multi-user resources are provided. In one aspect, the disclosure provides for a method of wireless communication with a plurality of wireless stations. The method comprises transmitting, by an access point, a first communication to a first wireless station, the first communication comprising an indication of a group of wireless stations from among the plurality of wireless stations, the group of wireless stations comprising the first wireless station. The method further comprises receiving, by the access point, a second communication from the first wireless station. The method further comprises transmitting, by the access point, a third communication to the group of wireless stations, the third communication comprising data for the group of wireless stations. In certain aspects, the third communication comprises a block acknowledgment of at least a portion of the second communication.
Abstract:
A method of wirelessly communicating includes generating, at a wireless device, a packet including a first preamble field. The method further includes generating a first repeated preamble field by multiplying the first preamble field by a first frequency-domain polarity sequence. The method further includes transmitting the packet from the wireless device. The packet includes the first preamble field and the first repeated preamble field.
Abstract:
Methods and apparatuses for communicating over a wireless communication network are disclosed herein. One method includes forming a message that includes a plurality of data tones and one or more direct current (DC) protection tones. The method further includes setting a value for a data tone of the plurality of data tones to carry a data portion of the message. The method further includes setting a value for a DC protection tone of the one or more DC protection tones by repeating the value for the data tone as the value for the DC protection tone. The method further includes transmitting the message to one or more wireless communication devices utilizing the plurality of data tones and the one or more DC protection tones.
Abstract:
Methods and apparatus for signaling tone allocations in OFDMA communication are disclosed herein. In one aspect, the method includes determining a tone allocation which divides a plurality of tones between a plurality of wireless communication devices, the tone allocation including at least one of determining a plurality of subbands, each subband comprising an exclusive contiguous subset of the plurality of tones, at least one subband of the plurality of subbands assigned to two or more devices of the plurality of wireless communication and assigning a tone group size to each wireless communication device of the plurality of wireless communication devices, wherein the tone group size indicates a number of contiguous tones that the wireless communication device is allocated, wherein at least one tone group size is larger than one. The method also includes transmitting the tone allocation to each of the plurality of wireless communication devices.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a wireless device. The wireless device determines a first subset of resource units (RUs) of a set of RUs that extends across a bandwidth of a channel in a transmission time period, the first subset of RUs including less RUs than the set of RUs, each RU of the set of RUs including at least 26 tones. The wireless device communicates at least one of data or control information in the first subset of the RUs.
Abstract:
Systems and methods for wireless communications are disclosed. More particularly, aspects generally relate to techniques for indicating a minimum and maximum channel bandwidth in a frame (e.g., short frame). One or more bits in the frame, for example a management frame, may indicate both minimum and maximum bandwidths for communicating in the network. According to aspects, a wireless terminal may determine the minimum and maximum bandwidths for communicating in the network based on a mapping of different values of the one or more bits to combinations of minimum and maximum bandwidths. While any field in the frame may indicate the minimum and maximum bandwidth, according to aspects, the Basic Service Set (BSS) bandwidth (BW) field may be used for the indication.
Abstract:
A method includes generating, at a source device, a data packet for transmission via an Institute of Electrical and Electronics Engineers (IEEE) 802.11 wireless network. The method also includes transmitting at least a portion of the data packet to a destination device according to a single carrier modulation scheme.
Abstract:
Certain aspects of the present disclosure generally relate to techniques and apparatus for determining a primary channel for wireless communication. According to certain aspects, a method is provided for wireless communications by an apparatus. The method generally includes obtaining an information element (IE) with one or more parameters and computing a primary channel location to be used for the wireless communication, as a function of the one or more parameters, wherein the function is independent of a geographical area in which the apparatus is located.