-
公开(公告)号:KR101797011B1
公开(公告)日:2017-11-13
申请号:KR1020160073965
申请日:2016-06-14
CPC classification number: B64D41/00 , B64C27/04 , B64C27/12 , B64C39/024 , B64C2201/024 , B64C2201/042 , B64C2201/06 , B64D33/08 , B64D2041/002 , Y02T50/53 , Y02T50/62
Abstract: 드론의한계를극복하고무인비행장치, 무인항공기까지사용할수 있도록대기환경과상관없이장시간동안추진력을제공할수 있는엔진발전기가개시된다. 이를위하여구동력을생성하는항공기엔진, 및상기구동력의전부를전기생성에사용하기위해항공기엔진의회전축에연결되며, 상기회전축으로구동력을전달받아전기를생성하는발전기를포함하는소형항공기용엔진발전기를제공한다. 또한, 전술한엔진발전기를장착한드론을제공한다. 본발명에의하면, 기존배터리를장착한드론과비교했을때 탑재된연료량에비례하여비행시간과임무중량을늘릴수 있으며온도, 습기등 대기환경에의한효율저하문제를개선할수 있다.
Abstract translation: 一种发动机发电机,无论大气环境如何,都能克服无人机的限制并长期提供推进力,从而可以使用无人驾驶飞行器和无人驾驶飞行器。 飞机发动机,其产生驱动力用于此目的,并且被连接到飞机发动机的旋转轴,以便使用所有的所述驱动力传递到发电的方法,包括一个发电机,用于通过接收驱动力以产生电力的小型飞机发动机驱动型发电机,所述旋转轴 提供。 此外,提供配备有上述发动机发电机的珩磨机。 根据本发明,可以按比例的燃料的量(重量)增加的飞行和任务的时间相比于安装安装无人驾驶飞机旧电池,提高了效率的劣化由于温度,湿度,空气质量等。
-
82.
公开(公告)号:KR101752861B1
公开(公告)日:2017-06-30
申请号:KR1020160018545
申请日:2016-02-17
Applicant: 한국에너지기술연구원
CPC classification number: G05B13/048 , B64C39/024 , B64C2201/02 , B64C2201/042 , B64C2201/06 , B64C2201/14 , B64F5/00 , G05D1/0005 , G05D1/0022 , Y02A90/16
Abstract: 본발명은재생연료전지와태양전지기반무인항공기의고고도장기체공시뮬레이션방법에관한것으로, 더욱상세하게는컴퓨터를포함하는연산처리수단에의하여실행되는프로그램형태로이루어지는재생연료전지와태양전지기반무인항공기의고고도장기체공시뮬레이션방법에있어서, 재생연료전지와태양전지기반무인항공기의설계변수들을입력하는변수입력단계(S100), 상기변수입력단계(S100)에서입력된설계변수들을이용하여, 재생연료전지와태양전지기반무인항공기의모델링을수행하는모델링단계(S200) 및상기모델링단계(S200)에서모델링결과를분석하여, 상기변수입력단계(S100)에서입력된설계변수들중 선택되는어느하나의설계변수들을제어하며고고도장기체공시뮬레이션을진행하는분석단계(S300)로이루어지는것을특징으로하는재생연료전지와태양전지기반무인항공기의고고도장기체공시뮬레이션방법에관한것이다.
Abstract translation: 更具体地,本发明涉及通过由包括计算机的算术处理装置执行的程序来实现的再生燃料电池和基于太阳能电池的无人机, 飞行器的即使在长期耐力模拟方法中,基于输入无人驾驶飞行器(S100)的设计参数,利用从参数输入步骤(S100)的设计参数的输入的变量输入步骤的再现燃料电池和太阳能电池,再现去,去 执行建模燃料电池和基于太阳能电池的无人飞行器的建模步骤S200以及建模步骤S200的建模结果,并且在参数输入步骤S100中输入的一个设计参数 (S300),用于控制太阳能电池的设计参数并控制太阳能电池的设计参数 去空气的围棋inhang涉及一种长期耐力模拟方法。
-
公开(公告)号:US20190248487A1
公开(公告)日:2019-08-15
申请号:US16272111
申请日:2019-02-11
Applicant: Skydio, Inc.
Inventor: Kristen Marie Holtz , Hayk Martirosyan , Jack Louis Zhu , Adam Parker Bry , Matthew Joseph Donahoe , Abraham Galton Bachrach , Peter Benjamin Henry , Ryan David Kennedy
CPC classification number: B64C39/024 , B64C2201/06 , B64C2201/123 , B64C2201/127 , B64C2201/141 , B64C2201/148 , B64C2201/18 , G06K9/00201 , G06K9/0063 , G06K9/00718
Abstract: A technique is introduced for autonomous landing by an aerial vehicle. In some embodiments, the introduced technique includes processing a sensor data such as images captured by onboard cameras to generate a ground map comprising multiple cells. A suitable footprint, comprising a subset of the multiple cells in the ground map that satisfy one or more landing criteria, is selected and control commands are generated to cause the aerial vehicle to autonomously land on an area corresponding to the footprint. In some embodiments, the introduced technique involves a geometric smart landing process to select a relatively flat area on the ground for landing. In some embodiments, the introduced technique involves a semantic smart landing process where semantic information regarding detected objects is incorporated into the ground map.
-
公开(公告)号:US20190187697A1
公开(公告)日:2019-06-20
申请号:US16282726
申请日:2019-02-22
Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventor: Jeremy A. GREENBERGER , Christopher J. HARDEE
CPC classification number: G05D1/0027 , B64C39/024 , B64C2201/027 , B64C2201/06 , B64C2201/108 , B64C2201/128 , G06Q10/083 , G08G5/0043 , G08G5/0069 , H02J7/0054
Abstract: Management of available energy among multiple drones is provided by identifying tasks to be completed by the multiple drones, and determining energy requirements of one or more drones of the multiple drones to facilitate completing one or more tasks of the tasks to be completed by the multiple drones. Further, the approach includes identifying an energy sharing approach for completion of the task(s) by the drone(s) where one or more other drones of the multiple drones transfer energy in transit to the drone(s) to facilitate completion of the task(s). In operation, the multiple drones may be detachably coupled, and the approach may include implementing the energy sharing approach by transferring energy from the other drone(s) to the drone(s) to facilitate completion of the task(s), for instance, prior to decoupling of the other drone(s) from the drone(s).
-
公开(公告)号:US20180251217A1
公开(公告)日:2018-09-06
申请号:US15756048
申请日:2016-08-30
Applicant: PRODRONE CO., LTD.
Inventor: Kazuo ICHIHARA , Kiyokazu SUGAKI
CPC classification number: B64C39/024 , B64C27/08 , B64C39/02 , B64C39/022 , B64C2201/024 , B64C2201/042 , B64C2201/06 , B64C2201/123 , B64C2201/148 , B64D27/24 , B64D47/08 , B64F3/00 , G05D1/08
Abstract: An apparatus for controlling a still position in the air, allowing a miniature unmanned aerial vehicle equipped with a plurality of rotors to move swiftly to a given position in the air and make its airframe hover stably in that position, the apparatus including a miniature unmanned aerial vehicle equipped with a plurality of rotors, a stationary plane from which and on which the miniature unmanned aerial vehicle takes off and lands, and a plurality of string-like members which link the miniature unmanned aerial vehicle with the stationary plane, wherein the plurality of string-like members are stretched to a length for all the members to become tense when the miniature unmanned aerial vehicle has come to a specified position which is a given position in the air. Also, it is preferable that the plurality of string-like members include at least three string-like members.
-
公开(公告)号:US09979000B2
公开(公告)日:2018-05-22
申请号:US15671371
申请日:2017-08-08
Applicant: AUTEL ROBOTICS CO., LTD.
Inventor: Longxue Qiu , Xingwen Wu
CPC classification number: H01M2/1083 , B64C39/024 , B64C2201/042 , B64C2201/06 , H01M2220/20
Abstract: The present invention discloses an unmanned aerial vehicle and a battery thereof. The battery includes a battery body and a shell disposed on one end of the battery body. The shell has a clamp button disposed on the side opposite the unmanned aerial vehicle. One end of the clamp button is fixed on the shell and the other is used for detachably connecting with the unmanned aerial vehicle. The clamp button makes the battery detachably connect with the main body of the unmanned aerial vehicle be possible and it is very convenient for changing the battery.
-
公开(公告)号:US09926084B2
公开(公告)日:2018-03-27
申请号:US15291878
申请日:2016-10-12
Applicant: Aurora Flight Sciences Corporation
Inventor: James Peverill , Adam Woodworth , Benjamin Freudberg , Dan Cottrell , Terrence McKenna
IPC: B64F1/02 , B64C39/02 , G05D1/10 , B60L11/18 , B64F1/36 , B64C25/68 , B64D47/04 , B64D47/08 , G06K9/00
CPC classification number: B64F1/02 , B60L11/1816 , B60L11/1838 , B60L2200/10 , B64C25/68 , B64C39/024 , B64C2201/028 , B64C2201/042 , B64C2201/06 , B64C2201/066 , B64C2201/123 , B64C2201/127 , B64C2201/141 , B64C2201/182 , B64D47/04 , B64D47/08 , B64F1/362 , G05D1/101 , G06K9/0063
Abstract: An aerial vehicle landing station comprising a first post and a second post, wherein the second post is spaced apart from the first post and a cable to capture an aerial vehicle, wherein the cable is stretched between the first post and the second post and configured to support the weight of the aerial vehicle once captured and the cable may provide a charging current to the aerial vehicle once captured. One or more markers may be further positioned on the cable to designate a landing point, wherein the one or more markers are configured to be visually tracked by the aerial vehicle. A cable management device coupled to the cable via one or more pulleys may regulate tension of the cable. A communications transceiver at the aerial vehicle landing station may wirelessly communicate data with the aerial vehicle.
-
公开(公告)号:US20180075760A1
公开(公告)日:2018-03-15
申请号:US15696984
申请日:2017-09-06
Applicant: Wal-Mart Stores, Inc.
Inventor: John P. Thompson , David C. Winkle , Michael D. Atchley , Donald R. High , Todd D. Mattingly , Brian G. McHale , John J. O'Brien , John F. Simon , Robert L. Cantrell , Nathan G. Jones , Robert C. Taylor
CPC classification number: G08G5/0082 , B64C39/024 , B64C2201/027 , B64C2201/042 , B64C2201/06 , B64C2201/108 , B64C2201/12 , G05B19/042 , G05D1/0088 , G05D1/0094 , G05D1/10 , H02J7/355 , H02J50/20
Abstract: Some embodiments provide an aerial monitoring system to monitor a geographic area, comprising: a unmanned aerial vehicle (UAV) comprising: a plurality of lift motors to drive a propeller; a substructural support supporting the lift motors and propellers; a UAV control circuit configured to control the operation of the lift motors; a rechargeable electrical power source that supplies electrical power to the UAV control circuit and the plurality of lift motors; a recharge control circuit; and a modifiable support system cooperated with the substructural support and supporting a set of photovoltaic cells electrically coupled with the rechargeable power source and configured to supply electrical power to the rechargeable power source, wherein the recharge control circuit is configured to control a modification of the modifiable support system to cause a physical modification of at least an orientation of the modifiable support system relative to the substructural support.
-
公开(公告)号:US20170322524A1
公开(公告)日:2017-11-09
申请号:US15436523
申请日:2017-02-17
Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
Inventor: Minjin KIM , Young-jun SOHN , Seung-gon KIM , Gu-gon PARK , Byungchan BAE , Sung-dae YIM , Seok-hee PARK , Tae-hyun YANG , Won-yong LEE , Chang-soo KIM
CPC classification number: G05B13/048 , B64C39/024 , B64C2201/02 , B64C2201/042 , B64C2201/06 , B64C2201/14 , B64F5/00 , G05D1/0005 , G05D1/0022
Abstract: Provided are a flight simulation and control method of a unmanned aerial vehicle with regenerative fuel cells and solar cells for high altitude long endurance, and a control apparatus thereof. The high altitude long endurance simulation method for an unmanned aerial vehicle based on regenerative fuel cells and solar cells includes: a variable inputting step of inputting design variables of the unmanned aerial vehicle based on regenerative fuel cells and solar cells; a modeling step of performing modeling of the unmanned aerial vehicle based on regenerative fuel cells and solar cells using the design variables input in the variable inputting step; and an analyzing step of analyzing a modeling result in the modeling step to perform a high altitude long endurance simulation while controlling any one of the design variables input in the variable inputting step.
-
公开(公告)号:US09800091B2
公开(公告)日:2017-10-24
申请号:US14124993
申请日:2012-06-09
Applicant: Thomas J. Nugent, Jr. , David Bashford , Jordin T. Kare
Inventor: Thomas J. Nugent, Jr. , David Bashford , Jordin T. Kare
CPC classification number: H02J50/30 , B64B1/50 , B64C39/022 , B64C39/024 , B64C2201/021 , B64C2201/022 , B64C2201/027 , B64C2201/042 , B64C2201/06 , B64C2201/148 , B64F3/00 , B64F3/02 , H02J7/025 , H02J17/00 , H02J50/40 , H04B10/807
Abstract: An aerial platform receives power in the form of light, for example laser light, transmitted via an optical fiber from a remote optical power source. The platform comprises a receiver which converts at least a portion of the light to a different form of power, for example electric power. The platform also comprises a propulsion element which consumes the different form of power to generate propulsive thrust. Supplying power to the aerial platform from a remote source enables the platform to remain aloft longer than a battery or fuel tank carried by the platform would allow. Transmitting the power in the form of light is preferable in many cases to transmitting electric power, because electrical conductors are generally heavier than optical fibers, and are hazardous in the presence of lightning or a high-voltage power line.
-
-
-
-
-
-
-
-
-