Abstract:
A photostructurable ceramic is processed using photostructuring process steps for embedding devices within a photostructurable ceramic volume, the devices may include one or more of chemical, mechanical, electrical, electromagnetic, optical, and acoustic devices, all made in part by creating device material within the ceramic or by disposing a device material through surface ports of the ceramic volume, with the devices being interconnected using internal connections and surface interfaces.
Abstract:
The present invention relates to a microfluid-system-supporting unit, comprising a fixing layer formed on a substrate, a protective layer or a fixing layer, wherein part of at least one hollow filament in any shape is placed and fixed in the fixing layer. Thus, it provides a microfluid-system-supporting unit lower in surface irregularity even when there are multiple hollow filaments different in external diameter or the hollow filaments crosses each other and resistant to positional deviation of the hollow filament in the crossing regions, and a production method thereof.
Abstract:
Provided is a microchip manufacturing method by which a functional film is formed in a flow path channel and resin microchip substrates are bonded. The manufacturing method has a first step of forming SiO2 films (12, 22) representing the functional films on a surface having a flow path channel (11) of a microchip substrate (10) and on a surface having a flow path channel (21) of a microchip substrate (20) respectively; a second step of exfoliating the SiO2 films formed on the microchip substrates (10, 20) except the SiO2 films formed on the flow path channels (11, 21) by a cohesive member; and a third step of placing the microchip substrates (10, 20) one over another in such a way that the surfaces on which the flow path channels (11, 21) are formed face inside, and bonding the substrates by laser welding, ultrasonic wave welding or thermocompression bonding.
Abstract:
A microfluidic circuit element comprising a microfluidic channel, in which the microfluidic channel has nano interstices formed at both sides thereof and having a height less than that of the center of the channel, gives more driving force of the microfluidic channel and provides stable flow of a fluid.
Abstract:
A channel is provided for conveying fluid by capillary action between a first end of the channel and a second end of the channel, in which the channel is fully enclosed within an object and the cross-section of the channel has a concave shape, encouraging capillary flow.
Abstract:
The present invention relates to a microfluid-system-supporting unit, comprising a fixing layer formed on a substrate, a protective layer or a fixing layer, wherein part of at least one hollow filament in any shape is placed and fixed in the fixing layer. Thus, it provides a microfluid-system-supporting unit lower in surface irregularity even when there are multiple hollow filaments different in external diameter or the hollow filaments crosses each other and resistant to positional deviation of the hollow filament in the crossing regions, and a production method thereof.
Abstract:
A support unit for a microfluidic system includes a first support; a first adhesive layer provided on a surface of the first support; and a hollow filament laid on a surface of the first adhesive layer to have an arbitrary shape and functioning as a flow channel layer of the microfluidic system.
Abstract:
A support unit for a microfluidic system includes a first support; a first adhesive layer provided on a surface of the first support; and a hollow filament laid on a surface of the first adhesive layer to have an arbitrary shape and functioning as a flow channel layer of the microfluidic system.
Abstract:
A micro transport machine may include a substrate and a movable device comprising a drive component responsive to a wireless power source. The movable device is operable to move between a plurality of disparate areas on the substrate.
Abstract:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.