Abstract:
A simple and cost-effective possibility is proposed for producing optically transparent regions (5, 6) in a silicon substrate (1), by the use of which both optically transparent regions of any thickness and optically transparent regions over a cavity in a silicon substrate are able to be implemented. For this purpose, first at least a specified region (5, 6) of the silicon substrate (1) is etched porous. Thereafter, the specified porous region (5, 6) of the silicon substrate (1) is oxidized.
Abstract:
A method for protecting a material of a microstructure comprising said material and a noble metal layer (8) against undesired galvanic etching during manufacture comprises forming on the structure a sacrificial metal layer (12) having a lower redox potential than said material, the sacrificial metal layer (12) being electrically connected to said noble metal layer (8).
Abstract:
A method of manufacturing a structure with pores which are formed by anodic oxidation and whose layout. pitch, position, direction, shape and the like can be controlled. The method includes the steps of: disposing a lamination film on a substrate, the lamination film being made of insulating layers and a layer to be anodically oxidized and containing aluminum as a main composition; and performing anodic oxidation starting from an end surface of the lamination film to form a plurality of pores having an axis substantially parallel to a surface of the substrate, wherein the layer to be anodically oxidized is sandwiched between the insulating layers, and a projected pattern substantially parallel to the axis of the pore is formed on at least one of the insulating layers at positions between the pores.
Abstract:
The invention relates to a method for selective etching of SiC, the etching being carried out by applying a positive potential to a layer (3; 8) of p-type SiC being in contact with an etching solution containing fluorine ions and having an oxidising effect on SiC. The invention also relates to a method for producing a SiC micro structure having free hanging parts (i.e. diaphragm, cantilever or beam) on a SiC-substrate, a method for producing a MEMS device of SiC having a free hanging structure, and a method for producing a piezo-resistive pressure sensor comprising the step of applying a positive potential to a layer (8) of p-type SiC being in contact with an etching solution containing fluorine ions and having an oxidising effect on SiC.
Abstract:
The invention provides a nanostructure including an anodized film including nanoholes. The anodized film is formed on a substrate having a surface including at least one material selected from the group consisting of semiconductors, noble metals, Mn, Fe, Co, Ni, Cu and carbon. The nanoholes are cut completely through the anodized film from the surface of the anodized film to the surface of the substrate. The nanoholes have a first diameter at the surface of the anodized film and a second diameter at the surface of the substrate. The nanoholes are characterized in that either a constriction exists at a location between the surface of the anodized film and the surface of the substrate, or the second diameter is greater than the first diameter.
Abstract:
An element with elongated, high aspect ratio channels such as microchannel plate is fabricated by electrochemical etching of a p-type silicon element in a electrolyte to form channels extending through the element. The electrolyte may be an aqueous electrolyte. For use as a microchannel plate, the; the silicon surfaces of the channels can be converted to insulating silicon dioxide, and a dynode material with a high electron emissivity can be deposited onto the insulating surfaces of the channels. New dynode materials are also disclosed.
Abstract:
A method of forming a nano-structure (100') involves forming a multi-layered structure (10) including an oxidizable material layer (14) established on a substrate (12), and another oxidizable material layer (16) established on the oxidizable material layer (14). The oxidizable material layer (14) is an oxidizable material having an expansion coefficient, during oxidation, that is more 1. Anodizing the other oxidizable material layer (16) forms a porous anodic structure (16'), and anodizing the oxidizable material layer (14) forms a dense oxidized layer (14') and nano-pillars (20) which grow through the porous anodic structure (16') into pores (18) thereof. The porous structure (16') is selectively removed to expose the nano-pillars (20). A surface (I) between the dense oxidized layer (14') and a remaining portion of the oxidizable material layer (14) is anodized to consume a substantially cone-shaped portion (32) of the nano-pillars (20) to form cylindrical nano-pillars (20').
Abstract:
A process for forming a porous metal oxide or metalloid oxide material, the process including: - providing an anodic substrate including a metal or metalloid substrate;- providing a cathodic substrate; - contacting the anodic substrate and the cathodic substrate with an acid electrolyte to form an electrochemical cell; - applying an electrical signal to the electrochemical cell;- forming shaped pores in the metal or metalloid substrate by: (c) time varying the applied voltage of the electrical signal to provide a voltage cycle having a minimum voltage period during which a minimum voltage is applied, a maximum voltage period during which a maximum voltage is applied, and a transition period between the minimum voltage period and the maximum voltage period, wherein the voltage is progressively increased from the minimum voltage to the maximum voltage during the transition period, or (d) time varying the current of the electrical signal to provide a current cycle having a minimum current period during which a minimum current is applied, a maximum current period during which a maximum current is applied, and a transition period between the minimum current period and the maximum current period, wherein the voltage is progressively increased from the minimum current to the maximum current during the transition period.
Abstract:
In a method of manufacturing a capacitive electromechanical transducer, a first electrode (8) is formed on a substrate (4), an insulating layer (9) which has an opening (6) leading to the first electrode is formed on the first electrode (8), and a sacrificial layer is formed on the insulating layer. A membrane (3) having a second electrode (1) is formed on the sacrificial layer, and an aperture is provided as an etchant inlet in the membrane. The sacrificial layer is etched to form a cavity (10), and then the aperture serving as an etchant inlet is sealed. The etching is executed by electrolytic etching in which a current is caused to flow between the first electrode (8) and an externally placed counter electrode through the opening (6) and the aperture of the membrane.
Abstract:
L'invention propose un procédé et un dispositif de micro et/ou nano-structuration électrochimique fiable, rapide, simple, facile à mettre en œuvre et reproductible. A cette fin, l'invention a pour objet un procédé de structuration électrochimique d'un échantillon (12) en un matériau conducteur ou semi-conducteur et comprenant deux faces opposées avant (11) et arrière (13). Le procédé comprend les étapes consistant à mettre au moins la face avant (11) de l'échantillon (12) en contact avec au moins une solution électrolytique (4) stockée dans au moins un réservoir (3), à disposer au moins une contre-électrode (6) dans l'électrolyte (4) en regard de la face avant (11) de l'échantillon (12) qui doit être structurée, à disposer au moins une électrode de travail (7) en contact ohmique sec avec la face arrière (13) de l'échantillon (12) et présentant des motifs de structuration (14), et à appliquer un courant électrique entre les deux électrodes pour obtenir une réaction électrochimique à l'interface de la face avant (11) de l'échantillon (12) et de l'électrolyte (4) avec une densité de courant qui est modulée par les motifs de structuration (14) de l'électrode de travail (7) pour former une gravure ou un dépôt sur la face avant (11) de l'échantillon (12).