Abstract:
An electronic device according to an aspect of the invention includes: a substrate; an underlayer having an opening and being formed on the substrate; a functional element provided on the underlayer; and a surrounding wall forming a cavity that accommodates the functional element, at least a part of the surrounding wall being disposed in the opening.
Abstract:
The present invention relates to a silicon nitride layer scanner with an improved tilt angle and a manufacturing method thereof and, more specifically, to a silicon nitride layer scanner including a silicon nitride layer; a grid which is connected to the outer lower part of the silicon nitride layer and supports the silicon nitride layer; a plurality of fixing comb teeth which is connected to the outer surface of the grid wherein the comb teeth are arranged at fixed intervals.
Abstract:
본 발명은 일반적으로 MEMS 또는 NEMS 디바이스를 제조하는 방법 및 이 디바이스에 관한 것이다. 캔틸레버 구조체에 비해 더 낮은 재결합 계수를 가지는 물질의 박막 층은 캔틸레버 구조체, RF 전극 및 풀오프 전극 위에 증착될 수 있다. 박막층은 공동으로 도입되는 에칭 가스로 하여금 공동 내에 전체 에칭제 재결합 속도를 감소시켜 공동 내에 희생 물질의 에칭 속도를 증가시킬 수 있게 한다. 에칭제 그 자체는 희생 물질의 최상부 층이 제일 먼저 에칭되도록 캔틸레버 구조체의 앵커 부분과 선형으로 정렬된 캡슐 층 내 개구를 통해 도입될 수 있다. 이후 밀봉 물질이 공동을 밀봉할 수 있고 이 밀봉 물질은 공동을 통해 앵커 부분으로 연장하여 앵커 부분에 추가적인 강도를 제공한다.
Abstract:
A conductive layer is deposited into a trench in a sacrificial layer on a substrate. An etch stop layer is deposited over the conductive layer. The sacrificial layer is removed to form a gap. In one embodiment, a beam is over a substrate. An interconnect is on the beam. An etch stop layer is over the beam. A gap is between the beam and the etch stop layer.
Abstract:
Embodiments of a method for forming a suspended membrane include depositing a first electrically conductive material above a sacrificial layer and within a boundary trench. The first electrically conductive material forms a corner transition portion above the boundary trench. The method further includes removing a portion of the first electrically conductive material that removes at least a portion of uneven topography of the first electrically conductive material. The method further includes depositing a second electrically conductive material. The second electrically conductive material extends beyond the boundary trench. The method further includes removing the sacrificial layer through etch openings and forming a cavity below the second electrically conductive material. The first electrically conductive material defines a portion of a sidewall boundary of the cavity.
Abstract:
Die vorliegende Erfindung beschreibt die ein Verfahren zur Herstellung eines mikromechanisches Bauelements, das mit diesem Verfahren hergestellte Bauelement sowie eine Verwendung des mikromechanischen Bauelements bei der Herstellung eines mikromechanischen Sensorbauelements. Zur Herstellung des mikromechanischen Bauelements wird auf der Vorderseite eines Halbleiterwafers zunächst eine erste strukturierte Schicht erzeugt, in deren Abhängigkeit mittels eines ersten Trenchätzschritts der Halbleiterwafer von der Vorderseite geätzt wird. Anschließend wird auf der Rückseite des Halbleiterwafers eine zweite strukturierte Schicht aufgebracht, in deren Abhängigkeit mittels eines zweiten Trenchätzschritts der Halbleiterwafer von der Rückseite geätzt wird. Der Kern der Erfindung besteht dabei darin, dass mittels des ersten und des zweiten Trenchätzschritts eine durchgehende Öffnung von der Vorderseite zur Rückseite in dem Halbleiterwafer erzeugt wird.
Abstract:
The present invention relates to a method for etching a feature in an etch layer that has a thickness of more than 2 micrometer from an initial contact face for the etchant to an opposite bottom face of the etch layer, at a lateral feature position in the etch layer and with a critical lateral extension at the bottom face. The method comprises fabricating, at the lateral feature position on the substrate layer, a mask feature from a mask-layer material, the mask feature having the critical lateral extension. The etch layer is deposited to a thickness of more than 2 micrometer, on the mask feature and on the substrate layer, from an etch-layer material, which is selectively etchable relative to the mask-layer material. Then, the feature is etched in the etch layer at the first lateral position with a lateral extension larger than the crit ical lateral extensio n, using an etchant that selectively removes the etch layer-material relative to the mask-layer material.
Abstract:
Mit der vorliegenden Erfindung werden einfache Maßnahmen vorgeschlagen, die eine nachträgliche Rückseitenprozessierung von Bauteilen mit einer Membranstruktur in der Bauteiloberfläche ermöglichen, um Zugangsöffnungen zu der Kaverne unterhalb der Membran zu erzeugen. Nachdem eine erste Membranschicht (111) und eine Kaverne (12) unter der ersten Membranschicht (111) von der Bauteiloberfläche ausgehend in einem Substratmaterial erzeugt worden sind, soll erfindungsgemäß über der ersten Membranschicht (111) zumindest im Bereich der mindestens einen zu erzeugenden Zugangsöffnung (13) eine Ätzstoppschicht (3) aufgebracht werden. Diese Zugangsöffnung (13) soll dann in einem Ätzschritt erzeugt werden, der von der Bauteilrückseite ausgeht und durch die Ätzstoppschicht (3) über der ersten Membranschicht (111) begrenzt wird.
Abstract:
A MEMS device is formed from a silicon device layer (9), an intermediate thermal oxide layer (7), and a silicon substrate (5). A microstructure is formed by a removal of material from the device layer (9), where the intermediate layer (7) is resistant to the removal technique, eg, acting as an etch stop layer. The microstructure is released by selective removal of portions of the substrate layer (9) immediately below the microstructure, eg, via a backside etch, followed by removing portions of the intermediate layer (7) beneath the microstructure. Siction is avoided as there is no substrate below the microstructure.