Abstract:
An apparatus is provided which comprises: a beam disposed in a void disposed above a substrate, the beam having anchored portions at opposite ends, wherein the beam comprises an atomic thick layer of 2-D material, a first conductive region cantilevered into the void from a surface of the substrate and spaced apart from the beam, and first and second gate electrodes disposed adjacent the surface of the substrate and spaced apart on opposite sides of the first conductive region. Other embodiments are also disclosed and claimed.
Abstract:
Nanowire-based mechanical switching devices are described. For example, a nanowire relay includes a nanowire disposed in a void disposed above a substrate. The nanowire has an anchored portion and a suspended portion. A first gate electrode is disposed adjacent the void, and is spaced apart from the nanowire. A first conductive region is disposed adjacent the first gate electrode and adjacent the void, and is spaced apart from the nanowire.
Abstract:
Fin-based transistor structures, such as finFET and nanowire transistor structures, are disclosed. The fins have a morphology including a wave pattern and/or one or more ridges and/or nodules which effectively mitigate fin collapse, by limiting the inter-fin contact during a fin collapse condition. Thus, while the fins may temporarily collapse during wet processing, the morphology allows the collapsed fins to recover back to their uncollapsed state upon drying. The fin morphology may be, for example, an undulating pattern having peaks and troughs (e., sine, triangle, or ramp waves). In such cases, the undulating patterns of neighboring fins are out of phase, such that inter-fin contact during fin collapse is limited to peak/trough contact. In other embodiments, one or more ridges or nodules (short ridges), depending on the length of the fin, effectively limit the amount of inter-fin contact during fin collapse, such that only the ridges/nodules contact the neighboring fin.
Abstract:
Micro pick-and-bond heads, assembly methods, and device assemblies. In, embodiments, micro pick-and-bond heads transfer micro device elements, such as (micro) LEDs, en masse from a source substrate to a target substrate, such as a LED display substrate. Anchor and release structures on the source substrate enable device elements to be separated from a source substrate, while pressure sensitive adhesive (PSA) enables device elements to be temporarily affixed to pedestals of a micro pick-and bond head. Once the device elements are permanently affixed to a target substrate, the PSA interface may be defeated through peeling and/or thermal decomposition of an interface layer.
Abstract:
A conductive layer is deposited into a trench in a sacrificial layer on a substrate. An etch stop layer is deposited over the conductive layer. The sacrificial layer is removed to form a gap. In one embodiment, a beam is over a substrate. An interconnect is on the beam. An etch stop layer is over the beam. A gap is between the beam and the etch stop layer.
Abstract:
Techniques are disclosed for using synthetic jet technology as an air delivery device for sensing applications. In particular, a synthetic jet device is used to deliver a controlled airflow or other fluidic flow to a sensor measurement area. Such a sensing system can be used to detect accurate concentration of target features present in the ambient surroundings, such as gases, particles, solutions, mixtures, and any other environmental features that can be sensed from a controlled airflow. An example application is air quality monitoring by using one or more synthetic jet devices to deliver a known or otherwise controlled airflow to a sensing area, thereby allowing for detection of harmful or otherwise unacceptable concentrations of particulate matter, gases, or air pollutants. In some embodiments, a synthetic jet device is operatively coupled with a sensor via a flow channel in a common housing, so as to provide a controlled flow sensing system.
Abstract:
Nanoelectromechanical (NEMS) devices having nanomagnets for an improved range of operating voltages and improved control of dimensions of a cantilever are described. For example, in an embodiment, a nanoelectromechanical (NEMS) device includes a substrate layer, a first magnetic layer disposed above the substrate layer, a first dielectric layer disposed above the first magnetic layer, a second dielectric disposed above the first dielectric layer, and a cantilever disposed above the second dielectric layer. The cantilever bends from a first position to a second position towards the substrate layer when a voltage is applied to the cantilever.
Abstract:
Micro pick-and-bond heads, assembly methods, and device assemblies. In, embodiments, micro pick-and-bond heads transfer micro device elements, such as (micro) LEDs, en masse from a source substrate to a target substrate, such as a LED display substrate. Anchor and release structures on the source substrate enable device elements to be separated from a source substrate, while pressure sensitive adhesive (PSA) enables device elements to be temporarily affixed to pedestals of a micro pick-and-bond head. Once the device elements are permanently affixed to a target substrate, the PSA interface may be defeated through peeling and/or thermal decomposition of an interface layer.
Abstract:
Nanoelectromechanical (NEMS) devices having nanomagnets for an improved range of operating voltages and improved control of dimensions of a cantilever are described. For example, in an embodiment, a nanoelectromechanical (NEMS) device includes a substrate layer, a first magnetic layer disposed above the substrate layer, a first dielectric layer disposed above the first magnetic layer, a second dielectric disposed above the first dielectric layer, and a cantilever disposed above the second dielectric layer. The cantilever bends from a first position to a second position towards the substrate layer when a voltage is applied to the cantilever.
Abstract:
Techniques and mechanisms to mitigate warping of a composite chiplet. In an embodiment, multiple via structures each extend through an insulator material in one of multiple levels of a composite chiplet. The insulator material extends around an integrated circuit (IC) component in the level. For a given one of the multiple via structures, a respective annular structure extends around the via structure to mitigate a compressive (or tensile) stress due to expansion (or contraction) of the via structure. In another embodiment, the composite chiplet additionally or alternatively comprises a structural support layer on the multiple levels, wherein the structural support layer has formed therein or thereon dummy via structures or a warpage compensation film.