MICROELECTRONIC PACKAGE AND METHOD OF MANUFACTURING A MICROELECTRONIC PACKAGE
    81.
    发明申请
    MICROELECTRONIC PACKAGE AND METHOD OF MANUFACTURING A MICROELECTRONIC PACKAGE 审中-公开
    微电子封装和制造微电子封装的方法

    公开(公告)号:WO2015192871A1

    公开(公告)日:2015-12-23

    申请号:PCT/EP2014/062551

    申请日:2014-06-16

    Abstract: The present invention concerns a microelectronic package (1) comprising a microelectronic structure (2) having at least a first opening (3) and defining a first cavity (4), a capping layer (9) having at least a second opening (10) and defining a second cavity (11) which is connected to the first cavity (4), wherein the capping layer (9) is arranged over the microelectronic structure (2) such that the second opening (10) is arranged over the first opening (3), and a sealing layer (13) covering the second opening (10), thereby sealing the first cavity (4) and the second cavity (11). Moreover, the present invention concerns a method of manufacturing the microelectronic package (1).

    Abstract translation: 本发明涉及包括具有至少第一开口(3)并限定第一空腔(4)的微电子结构(2)的微电子封装(1),具有至少第二开口(10)的封盖层(9) 并且限定连接到所述第一腔体(4)的第二空腔(11),其中所述覆盖层(9)布置在所述微电子结构(2)上方,使得所述第二开口(10)布置在所述第一开口 3)和覆盖第二开口(10)的密封层(13),从而密封第一腔(4)和第二腔(11)。 此外,本发明涉及一种制造微电子封装(1)的方法。

    MICROELECTROMECHANICAL SYSTEMS AND METHODS FOR ENCAPSULATING
    83.
    发明申请
    MICROELECTROMECHANICAL SYSTEMS AND METHODS FOR ENCAPSULATING 审中-公开
    微电子系统及其封装方法

    公开(公告)号:WO2004109769A3

    公开(公告)日:2005-12-29

    申请号:PCT/US2004009492

    申请日:2004-03-30

    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures (20a-d) encapsulated in a chamber (26) prior to final packaging. The material (28a) that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilities integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.

    Abstract translation: 这里描述和说明了许多发明。 一方面,本发明涉及一种MEMS器件,以及制造或制造MEMS器件的技术,其具有在最终封装之前封装在腔室(26)中的机械结构(20a-d)。 当沉积时,封装机械结构的材料(28a)包括以下属性中的一个或多个:低拉伸应力,良好的阶梯覆盖度,当经受后续加工时保持其完整性,不会显着和/或不利地影响性能 室内的机械结构的特征(如果在沉积期间涂覆材料)和/或与高性能集成电路的设备集成。 在一个实施例中,封装机械结构的材料是例如硅(多晶,无定形或多孔,无论掺杂或未掺杂),碳化硅,硅 - 锗,锗或砷化镓。

    MICROELECTROMECHANICAL SYSTEMS, AND METHODS FOR ENCAPSULATING AND FABRICATING SAME
    84.
    发明申请
    MICROELECTROMECHANICAL SYSTEMS, AND METHODS FOR ENCAPSULATING AND FABRICATING SAME 审中-公开
    微电子系统及其封装和制造方法

    公开(公告)号:WO2004109769A2

    公开(公告)日:2004-12-16

    申请号:PCT/US2004/009492

    申请日:2004-03-30

    IPC: H01L

    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.

    Abstract translation: 这里描述和说明了许多发明。 在一个方面,本发明涉及MEMS器件,以及制造或制造MEMS器件的技术,其具有在最终封装之前封装在腔室中的机械结构。 当沉积时,封装机械结构的材料包括以下属性中的一个或多个:低拉伸应力,良好的阶梯覆盖,在经受后续加工时保持其完整性,不会显着和/或不利地影响 室中的机械结构(如果在沉积期间涂覆材料)和/或促进与高性能集成电路的集成。 在一个实施例中,封装机械结构的材料是例如硅(多晶,无定形或多孔,无论掺杂或未掺杂),碳化硅,硅 - 锗,锗或砷化镓。

    코팅된 정전용량형 센서
    85.
    发明公开
    코팅된 정전용량형 센서 无效
    涂层电容式传感器

    公开(公告)号:KR1020140053246A

    公开(公告)日:2014-05-07

    申请号:KR1020147005238

    申请日:2012-08-03

    Abstract: 일 실시예에서, MEMS 장치를 형성하는 방법은 기판을 제공하는 단계와, 기판층 상부에 희생층을 형성하는 단계와, 희생층 상에 실리콘계 작용부를 형성하는 단계와, 작용부가 적어도 하나의 노출된 외면을 포함하도록 희생층으로부터 실리콘계 작용부를 배출하는 단계와, 실리콘계 작용부의 적어도 하나의 노출된 외면 상에 제1 실리사이드 형성 금속층을 형성하는 단계와, 제1 실리사이드 형성 금속층으로 제1 실리사이드층을 형성하는 단계를 포함한다.

    마이크로전기기계 시스템 및 캡슐화와 그 제조 방법
    86.
    发明公开
    마이크로전기기계 시스템 및 캡슐화와 그 제조 방법 无效
    微电子系统及其封装和制造方法

    公开(公告)号:KR1020060015633A

    公开(公告)日:2006-02-17

    申请号:KR1020057023053

    申请日:2004-03-30

    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.

    Abstract translation: 这里描述和说明了许多发明。 在一个方面,本发明涉及MEMS器件,以及制造或制造MEMS器件的技术,其具有在最终封装之前封装在腔室中的机械结构。 当沉积时,封装机械结构的材料包括以下属性中的一个或多个:低拉伸应力,良好的阶梯覆盖,在进行后续加工时保持其完整性,不会显着和/或不利地影响 室中的机械结构(如果在沉积期间涂覆材料)和/或促进与高性能集成电路的集成。 在一个实施例中,封装机械结构的材料是例如硅(多晶,无定形或多孔,无论掺杂或未掺杂),碳化硅,硅 - 锗,锗或砷化镓。

    양극접합을 이용한 광스캐너 및 그 제조방법
    88.
    发明公开
    양극접합을 이용한 광스캐너 및 그 제조방법 失效
    光学扫描仪使用阳极结合方法及其制作方法

    公开(公告)号:KR1020040033299A

    公开(公告)日:2004-04-21

    申请号:KR1020040021000

    申请日:2004-03-27

    Abstract: PURPOSE: An optical scanner using an anodic bonding method and a fabricating method thereof are provided to improve the stability by forming an anodic laminate structure of a dielectric and a glass plate or the anodic laminate structure of the dielectric and a metal layer. CONSTITUTION: An optical scanner using an anodic bonding method includes a rectangular frame(80), a torsion bar(61'), a rectangular scanning mirror(66"), and a driving comb electrode(61"). One or more dielectrics and metal layers are formed between a substrate and a glass plate. The rectangular frame(80) includes an anodic laminate structure having the dielectrics and the metal layers. The torsion bar(61') is extended from the rectangular frame. The rectangular scanning mirror(66") is connected to the torsion bar. The driving comb electrode(61") is formed on a bottom face of the rectangular scanning mirror.

    Abstract translation: 目的:提供一种使用阳极接合方法的光学扫描仪及其制造方法,通过形成电介质和玻璃板的阳极叠层结构或电介质和金属层的阳极叠层结构来提高稳定性。 构成:使用阳极接合方法的光学扫描仪包括矩形框架(80),扭杆(61'),矩形扫描镜(66“)和驱动梳状电极(61”)。 在基板和玻璃板之间形成一个或多个电介质和金属层。 矩形框架(80)包括具有电介质和金属层的阳极叠层结构。 扭杆(61')从矩形框架延伸。 矩形扫描镜(66“)连接到扭杆上,驱动梳状电极(61”)形成在矩形扫描镜的底面上。

Patent Agency Ranking