Abstract:
A dielectric assembly for generating ozone includes a positive electrode, a negative electrode, a dielectric for generating the ozone, and a knob adapted to extend outside of a housing into which the dielectric assembly is to be placed. A system is also provided for sanitizing and deodorizing water, food, surfaces and air including a microbiological reduction filter device having an input connected to a water supply, a venturi injector disposed within a housing and connected to an output of the microbiological reduction filter device which generates ozone and mixes the generated ozone with the water, and an electrode assembly comprising a plurality of electrodes, a dielectric for generating the ozone, and a knob extending outside of the housing. The dielectric in a first embodiment and the entire dielectric assembly in a second embodiment can be removed from the housing and replaced in its entirety by the knob.
Abstract:
A system for performing ozone water treatment comprises a voltage supply circuit and a plasma eductor reactor. The voltage supply circuit includes an H-bridge controller and driver, a transformer, and an output port. The H-bridge controller and driver are configured to switch the electrical polarity of a pair of terminals. A primary of the transformer is connected to the H-bridge driver and controller. A secondary of the transformer connects in parallel with a first capacitor and in series with an inductor and a second capacitor. The output port connects in parallel with the second capacitor. The plasma eductor reactor includes an electric field generator, a flow spreader, and a diffuser. The electric field generator includes a pair of electrodes that generate an electric field. The flow spreader supplies a stream of oxygen. The diffuser supplies a stream of water. The streams of water and oxygen pass through the electric field.
Abstract:
An ozone generating apparatus includes a base container for holder water and a head assembly connected to the upper edge of the base container, the head assembly containing ozone generating cells, each having a dielectric tube and an electrode assembly coaxially disposed with the associated dielectric tube. The dielectric tubes and electrode assemblies are disposed and connected such that the tube and/or electrode assembly of each ozone generating cell can be accessed and replaced independently of all other ozone generating cells, and such that the possibility of cascade failure of all remaining ozone generating cells upon failure of a single cell is substantially eliminated.
Abstract:
The present invention offers an operation method of an ozonizer and an ozonizer apparatus to improve ozone gas purity and to achieve long and safety electrolysis operation in such manner that, during normal operation of the ozonizer, ozone gas is generated at the anode in the anode compartment and hydrogen gas is generated at the cathode in the cathode compartment; and only when the ozonizer is stopped and operation is switched to protective current operation during which minute electric current is supplied to protect said anode, oxygen-containing gas is supplied to said cathode compartment after electrolyte and hydrogen gas in said cathode compartment are all drained out, so that said cathode is made function as a gas electrode for oxygen reduction reaction, using said cathode as a reversible electrode with two functions as a gas generation electrode and a gas electrode, thereby during normal operation, ozone is generated efficiently, and during the protective current operation, when safety is a key issue, hydrogen gas is not generated at the cathode and mingling of hydrogen gas into ozone gas generated at the anode is prevented.
Abstract:
The Diffusive Plasma is for effective treatment of contaminated air and material processing. Air is purified and disinfected by passing through the diffusive plasma device which includes a reactor or a plurality of reactors arranged in parallel or series and is energized by a high voltage alternating current power supply. The diffuser, being electrically isolated, provides extra nucleation sites to initiate discharges. It serves to improve the generation of uniform and consistent plasma and to reduce the variation of discharge properties among the reactors. The addition of a diffuser, thereby, enhances the overall effectiveness of decomposing chemicals and destroying microbes to achieve high air treatment and material processing performance. The diffuser can be made of suitable filtering materials to additionally serve as a filter. By incorporating suitable catalytic materials with the diffuser, the reactor becomes a catalytic plasma reactor wherein the plasma environment provides enhanced catalytic functions. Effective plasma power deposition may be obtained by controlling the amplitude, waveform period and shape of the voltage applied to the electrodes of the reactor and hence the operation of the reactors with plasma discharged of selected conditions for optimizing the treatment and processing efficiency while minimizing the generation of unwanted bi-product gases. The present invention also relates to a method for effective air treatment and material processing.
Abstract:
To enable to reduce a manufacturing cost and to generate high-concentration ozone gas, in a plate-type discharge cell for ozonizer. To improve ozone concentration without depending on reduction of a gap amount in a discharge gap. Dispose dielectric bodies between a high-voltage electrode and a low-voltage electrode to form a discharge gap. On a back surface side of the high-voltage and the low-voltage electrodes, a high-voltage insulating plate and a low-voltage insulating plate are disposed, respectively, for insulating the electrodes and from cooling water. A thickness of the high-voltage insulating plate is set to not less than 0.5 times and not more than 3.5 times the total thickness of the dielectric bodies, which are disposed between the high-voltage and the low-voltage electrodes. Opposed surfaces of the dielectric bodies, which contact the discharge gap, are smoothed such that a roughness Ra thereof is not larger than 2 μm.
Abstract:
An improved corona generator structure includes a ground tube body sheathed within an insulating sleeve. One end of the ground tube body is provided with a sealing lid for being firmly coupled to the end portion of the ground tube body. At least one piece of high voltage electrode plate is coupled with the insulating sleeve. The high voltage electrode plate is provided with a plurality of spacers for allowing a gap of a substantially equal height to be formed between every area of the high voltage electrode plate and the insulating sleeve so as to uniformly distribute the corona on the high voltage electrode plate when electricity conducts therethrough. Furthermore, the two retaining sleeves are coupled to both end portions of the high voltage electrode plate and the insulating sleeve such that the high voltage electrode plate is firmly positioned on the insulating sleeve. By means of exposure of the high voltage electrode plate, a user can detach and wash the corona generator quickly and achieve efficacy of heat dissipation.
Abstract:
This is a discharge cell used for an ozonizer. A space where a discharge gap amount is determined between the first electrodes 10 and 10 is formed by stacking a couple of upper and lower first electrodes 10 and 10, constituted by the plate-like rigid body, in both sides with sandwiching a couple of rigid body spacers 20 and 20. In this space, a dielectric body unit 30 that consists of a rigid body of the sandwich structure of sandwiching a second electrode 32 is arranged between glass plates 31 and 31. The dielectric body unit 30 is supported in a neutral position in the space by a plurality of spacers 40, 40, . . . for discharge gap formation that are inserted between the upper and lower first electrodes 10, and forms discharge gaps 50 and 50 in both sides. The minimum discharge gap amount G of 0.4 mm or less is stably secured. It is possible to prevent the damage of a cell component and a pressurizing mechanism.
Abstract:
An improved corona generator structure includes a ground tube body sheathed within an insulating sleeve. One end of the ground tube body is provided with a sealing lid for being firmly coupled to the end portion of the ground tube body. At least one piece of high voltage electrode plate is coupled with the insulating sleeve. The high voltage electrode plate is provided with a plurality of spacers for allowing a gap of a substantially equal height to be formed between every area of the high voltage electrode plate and the insulating sleeve so as to uniformly distribute the corona on the high voltage electrode plate when electricity conducts therethrough. Furthermore, the two retaining sleeves are coupled to both end portions of the high voltage electrode plate and the insulating sleeve such that the high voltage electrode plate is firmly positioned on the insulating sleeve. By means of exposure of the high voltage electrode plate, a user can detach and wash the corona generator quickly and achieve efficacy of heat dissipation.
Abstract:
An ozone generation apparatus and method is described. The apparatus includes a dielectric body having a wall defining a fluid passageway operable to contain and conduct fluid containing oxygen, a first conductor generally having a line geometry extending lengthwise in the passageway and a second conductor generally having a line geometry, supported outside of the passageway by the body to extend generally parallel to the first conductor. The first and second conductors are arranged to cause an electric field to be established therebetween and through the fluid passageway when an electric potential is applied across the first and second conductors.