Abstract:
Die vorliegende Erfindung stellt einen Leichtbau-Kurbeltrieb mit Komponenten aus dichtereduziertem ultrahochkohlenstoffhaltigen Leichtbaustahl und dessen Herstellungsverfahren bereit. Der Leichtbau-Kurbeltrieb umfasst eine Kurbelwelle, ein Pleuel mit einem großen und einem kleinen Pleuelauge und einen Kolbenbolzen, wobei die Kurbelwelle in dem großen Pleuelauge und der Kolbenbolzen in dem kleinen Pleuelauge gelagert sind. Dabei bestehen alle Komponenten Kurbelwelle, Pleuel und Kolbenbolzen aus dem UHC-Leichtbaustahl. Zudem wird das Kurbelwellenlager in dem großen Pleuelauge durch zumindest eine thermische Spritzschicht bereitgestellt und der Kolbenbolzen weist eine Hartstoff-Beschichtung auf.
Abstract:
A wire used in the medical field for guiding purposes, as well as in other fields, such as in the field of orthodontics for teeth aligning purposes. The wire, when prepared for use in such applications, exhibits an innovative blend of advantageous properties, including enhanced kink resistance over stainless steel wires and enhanced stiffness over Nitinol wires, which enhance its use as a medical guidewire or stylet, and further, as an arch wire in orthodontia applications.
Abstract:
Ein Stahlblechteil wird im verfestigten Zustand, in dem es ein Gefüge mit Körnern, die zum überwiegenden Teil eine gerichtete, von der Kugelform abweichende From und eine mittlere Korngrösse von > 10 mum aufweisen, auf eine Verformungstemperatur (TW) erwärmt, bei der in dem Stahlblechteil in Folge der einsetzenden oder ablaufenden Rekristallisation eine instabile, superplastische Mikrostruktur vorliegt, und dass die Verformung des auf die Verformungstemperatur TW erwärmten Stahlblechteils im Wesentlichen während des Rekristallisationsvorgangs erfolgt. Die Verformungs temperatur beträgt vorzugsweise 700 - 950°C, Die Erwärmung und Umformung ist nach 1 - 120 s abgeschlossen, und die Dehnungsgeschwindigkeit beträgt 10 -2 - 10 1 1/s.
Abstract:
The invention relates to plastic working of metals and alloys, predominantly low-plastic and hard-to-work ones, e.g., nickel-, titanium-, and iron-base high-temperature alloys, and producing billets for parts made by plastic working of said billets. The method comprises thermomechanical processing which is performed beginning with the temperature at which a total content of precipitates or an allotropic modification of the matrix exceeds 7%, followed by a stage-by-stage decrease of the working temperature down to the temperature at which a stable fine-grained microstructure of the material is obtained, with ratio between the grain size of various phases differing by not more than 10 times, the billet under processing undergoes deformation with a 1.2 to 3.9 times change in the billet cross-sectional area. When preparing billets from nickel-base alloys a stage-by-stage decrease of the working temperature is carried out so as to provide a maximum 14% gain in the gamma-phase at each stage. At the end of each process stage a successive annealing of the billet is performed.
Abstract:
The invention relates to plastic working of metals and alloys, predominantly low-plastic and hard-to-work ones, e.g., nickel-, titanium-, and iron-base high-temperature alloys, and producing billets for parts made by plastic working of said billets. The method comprises thermomechanical processing which is performed beginning with the temperature at which a total content of precipitates or an allotropic modification of the matrix exceeds 7 %, followed by a stage-by-stage decrease of the working temperature down to the temperature at which a stable fine-grained microstructure of the material is obtained, with ratio between the grain size of various phases differing by not more than 10 times, the billet under processing undergoes deformation with a 1.2 to 3.9 times change in the billet cross-sectional area. When preparing billets from nickel-base alloys a stage-by-stage decrease of the working temperature is carried out so as to provide a maximum 14 % gain in the gamma -phase at each stage. At the end of each process stage a successive annealing of the billet is performed.
Abstract:
The invention relates to a method for manufacturing a titanium alloy having superelastic properties and/or shape memory for biomedical use, which comprises the steps of: preparing an ingot by melting the various metals that form the desired alloy in a vacuum; optionally homogenising the ingot in a vacuum by high-temperature annealing (higher than 900 °C); first quenching; mechanical shaping (rolling, drawing, machining or the like); heat treatment for redissolution in beta phase beyond the beta transus temperature (until a second temperature and then maintaining same for a certain time); and second quenching; characterised in that said heat treatment phase is carried out in a gaseous atmosphere and also constitutes a surface treatment suitable for forming on the surface a layer of nitride, carbonitride, oxide, oxynitride or the like.
Abstract:
The invention relates to a method for producing magnesium alloys with a superplastic structure using a deformation process, followed by quick cooling. The magnesium-based alloy is initially pre-heated to a temperature of 340 -380 DEG C and is subsequently deformed. The semi-finished product thus obtained is cooled down at high speed to an ambient temperature immediately after deformation.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Magnesiumlegierungen mit einer superplastischen Gefügestruktur durch einen Umformprozess mit anschließender rascher Abkühlung. Die Magnesiumbasislegierung wird zunächst auf eine Temperatur von 340 bis 380°C vorgewärmt und anschließend umgeformt. Das entstehende Halbzeug wird sofort nach dem Umformprozess mit hoher Abkühlgeschwindigkeit auf Raumtemperatur abgeschreckt.
Abstract:
A method of bonding a titanium article to another metal article using a superplastic interlayer is disclosed. A fine-grain titanium alloy interlayer is provided between faying surfaces of the articles to be bonded. The interlayer has an alpha-beta microstructure and an average grain size of less than about 1-3 microns (.001-.003 mm) in at least one plane. The articles to joined and the interlayer are heated to between 1000 DEG F (538 DEG C) and 1500 DEG F (816 DEG C). A sufficiently large compressive force is then applied to the articles to cause superplastic deformation of the interlayer and bonding of the articles.