Abstract:
Embodiments of the present invention are directed to determining the spectral vector of electromagnetic radiation reflected from, transmitted through, or emitted from a sample using a set of n intensity measurements. In general, the spectral vector has a dimension k that is greater than the number of measured intensities n. However, in many cases, the physical and chemical constraints of a system, when properly identified and modeled, effectively reduce the number of unknowns, generally the k components of the spectral vector, to an extent that allows for the spectral vector to be characterized from a relatively small number n of measured intensities.
Abstract:
본 발명은 디스플레이기의 색채학적 계산방법을 개시한다. 상기 디스플레이기는 양자점 백라이트 모듈 및 상기 양자점 백라이트 모듈의 출광측에 설치되는 제1 편광판을 포함하고, 상기 양자점 백라이트 모듈은 도광판, 상기 도광판의 출광측에 설치되는 양자점 박막층, 및 상기 도광판의 입광측에 설치되는 배광원을 포함한다. 상기 방법은 기준 편광판을 통해 양자점 백라이트 모듈의 보정 스펙트럼을 획득하고, 보정 스펙트럼 및 백라이트 모듈의 측정으로 획득된 측정 스펙트럼을 근거로, 제1 편광판을 양자점 백라이트 모듈의 출광측에 설치 시의 양자점 백라이트 모듈의 실제 스펙트럼, 즉 수정된 스펙트럼을 획득함으로써, 제1 편광판의 이차 여기로 초래되는 색도 편차 현상을 정확하게 시뮬레이션하여, 양자점 백라이트 모듈을 포함하는 디스플레이기의 양적 설계에 기초를 제공한다. 본 발명은 디스플레이기의 색도 계산방법을 더 개시한다.
Abstract:
PROBLEM TO BE SOLVED: To provide an imaging system capable of addressing the needs including performing color inspection on a linear spectrum image, so as to contribute to enlargement of a utilization range.SOLUTION: An imaging system 10 includes an imaging device 12, an FPGA 14 serving as spectroscopic image creating means, and a control unit 16 serving as spectrum estimating means for estimating a spectrum for every pixel from the created spectroscopic image. The imaging device 12 includes filter means 26 comprising a plurality of filters having different spectroscopic characteristics. At least one of the plurality of filters has transmittance in which the control unit 16 can estimate a linear spectrum.
Abstract:
Provided are devices and methods for grouping light emitters and devices including the same. Embodiments of such methods may include selecting a portion of the light emitters using a region of a multiple axis color space that is configured to represent each of a plurality of colors as at least two chromaticity coordinates. The region may be proximate a predefined point on the multiple axis color space and includes a major axis having a first length and a minor axis having a second length that is less than the first length.
Abstract:
PROBLEM TO BE SOLVED: To provide a photometric system which reduces errors, even in the measurement of narrow-band light such as monochromatic light and performs measurements of chroma values or the like with high accuracy. SOLUTION: A chromameter 1 comprises a polychromater 4 as a spectral optical system including a light-receiving sensor array 43, a signal processing circuit 5, and an arithmetic and control unit 6. The arithmetic and control unit 6, using a light-receiving signal and a predetermined weighting coefficient, performs calculations for determining the characteristics of light to be measured, on the basis of predetermined spectral responsivity. The spectral responsivity of each light-receiving sensor, constituting the light-receiving sensor array 43, is selected to be B≥5 nm and A/B=1.5 to 4.0, where A is the half-value width of the spectral responsiveness and B is the center wavelength interval thereof. COPYRIGHT: (C)2006,JPO&NCIPI