Abstract:
An apparatus for imaging a tooth having a light source with a first spectral range and a second spectral range. A polarizing beamsplitter (18) light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor (68), wherein the first and second polarization states are orthogonal. A first lens (22) in the return path directs image-bearing light from the tooth, through the polarizing beamsplitter (18), toward the sensor (68), and obtains image data from the redirected portion of the light having the second polarization state. A long-pass filter ( 15) in the return path attenuates light in the second spectral range. Control logic enables the sensor to obtain either the reflectance image or the fluorescence image.
Abstract:
An optical assembly for use with a spectrophotometer. The optical assembly may comprise an illumination source, a detection sensor, a monitor sensor, and an optical piece having a first side adapted to face a sample. The optical piece may define an illumination channel extending from the illumination source toward the first side. The optical piece may also define a detection channel extending from the first side toward the detection sensor, hi addition, the optical piece may define a monitor channel extending from the illumination channel toward the monitor sensor. Also, a light emitting diode (LED) assembly for use with an optical measurement device. The LED assembly may comprise a substrate having a top surface and a bottom surface and a plurality of LED dies positioned on the substrate to emit light in a first direction normal to the bottom surface of the substrate. The LED assembly may also comprise a plurality of leads in electrical contact with the plurality of LED dies. The plurality of leads may be positioned on the bottom surface of the substrate, and may be configured to surface-mount to a board.
Abstract:
Eine Abtastvorrichtung umfasst eine Auflagefläche für das Messobjekt und eine Antriebseinrichtung zur Bewegung eines Farbmesskopfs über die Auflagefläche in wenigstens einer Dimension derselben und zur Höhenverstellung des Farbmesskopfs in Richtung senkrecht zur Auflagefläche sowie eine die Antriebseinrichtung ansteuernde und mit dem Farbmesskopf (MH) zusammenarbeitende Mess- und Antriebssteuerung. Der Farbmesskopf (MH) ist mit wenigstens einem Beleuchtungskanal (IC) und einem Sammelkanal (CC) ausgestattet ist. Der Beleuchtungskanal (IC) weist eine Lichtquelle (10) und optische Mittel (12-22) auf, um das Messobjekt (S) an einem Messort unter einem mittleren Einfallswinkel von 45° zu beleuchten. Der Sammelkanal (CC) besitzt optische Mittel (24-34), um vom Messobjekt am Messort ausgehendes Messlicht unter einem mittleren Sammelwinkel von 0° aufzufangen und in einen Lichtleiter (LF) einzukoppeln, welcher das aufgefangene Messlicht einem vorzugsweise als Spektrometer ausgebildeten wellenlängenselektiven lichtelektrischen Wandler zuführt, der es in eine Anzahl von Wellenlängenbereichen auflöst und für jeden Wellenlängenbereich ein korrespondierendes elektrisches Messsignal erzeugt. Die optischen Mittel im Beleuchtungslcanal (IC) umfassen eine Kollimationsoptik (12), eine Feldblende (16) und eine symmetrische telezentrische Abbildungsoptik (18). Die optischen Mittel im Sammelkanal (CC) umfassen eine Abbildungsoptik (28), eine Feldblende (32) und eine Einkoppcloptik (34). Die Kollimationsoptik (12) kollimiert das von der Lichtquelle (10) stammende Beleuchtungslicht und leuchtet damit die Fcldblende (16) des Beleuchtungskanals (IC) achsparallel homogen aus. Die telezentrische Abbildungsoptik (18) bildet die Feldblende (16) scharf in eine Messebene ab und erzeugt dabei einen Beleuchtungsfleck. Die Abbildungsoptik (28) im Sammelkanal (CC) bildet die Feldblende (32) scharf in die Messebene innerhalb des Beleuchtungsflecks (IS) ab und definiert durch das Abbild der Feldblende einen Messfleck, wobei der Sammelkanal (CC) nur aus dem Messfleck stammendes Messlicht auffängt und über die Einkoppeloptik (34) in den Lichtleiter (LF) einkoppelt. Der Farbmesskopf ist aufgrund seiner spezifischen Ausbildung für die berührungslose, hochpräzise Messung auch von kleinsten Messfeldern geeignet.
Abstract:
Spectroscopy apparatus for spectrochemical analysis of a sample having an excitation source (60) for providing spectral light (62) of the sample for analysis. The spectral light (62) is analysed via an optical system (64-66-68) that includes a polychromator (70, 74-80) and solid state multielement array detector (82). The elements (i.e. pixels) of the detector (82) are serially read by means (84) to provide light intensity measurements as a function of wavelength. A problem is that the elements (pixels) of the detector (82) continue to accumulate charge during the serial read-out. This is avoided by providing an optical shutter (72) for blocking the spectral light (62) whilst elements (pixels) of the detector (82) are being serially read. Shutter (72) has a piezoelectric actuator which is preferably a bimorph mounted as a cantilever. It is preferably located adjacent to the entrance aperture (70) of the polychromator. Bimorph structures for the actuator and drive and protective circuit arrangements are also disclosed.
Abstract:
The apparatus comprises a receiving body (1) for receiving the reaction containers (3) carrying the samples to be analyzed, with means (4,4',4'',5,5',5'',6,6') for causing each of the reaction containers to be passed through by a luminous signal of controlled wavelength, having means for conducting it to a scanning head where the luminous signals are picked up by a single CCD sensor (12), constituting a digital processing system for evaluating the absorbency of the corresponding sample.
Abstract in simplified Chinese:本发明提供一种生体成分信息测量设备,不会使测量精度降低且设备构成小型化。生体成分信息测量设备(100)在试料容器(104)中收容着血液或培养细胞、尿等测量对象(105),使用旋转绕射光栅(110)将光源(101)的光加以分光并入射至测量对象(105)。借此,可削减分光光学系统的零件个数及所需空间。结果,不会使测量精度降低,且尤其可使分光光学系统小型化。
Abstract in simplified Chinese:此发明系关于一色彩传感器设备,且系关于一用于色彩传感器校正的方法。一色彩传感器设备包括一色彩传感器(1),其系安排为产生至少一个第一频道信号(CH1),其指示入射在该色彩传感器(1)上之光的色彩。一处理单元(2)连接至该色彩传感器(1),并安排为借由处理该至少一个第一频道信号(CH1)来产生一色彩信号元组(R、G、B)。一内存(3)连接至该处理单元(2),且一控制单元(4)连接至该处理单元(2)及该内存(3)。此外,该控制单元(4)系安排为接收使该色彩信号元组(R、G、B)与一经校准之色彩信号元组(X、Y、Z)产生关联之校准数据(M),并安排为经由该内存(3)存储该校准数据(M)。一界面(5)连接至该处理单元(2),并包括一界面端子(51)。
Simplified title:可同时传感发光强度与色度之高速光学传感设备与具有此高速光学传感设备之光学量测系统 A HIGH-SPEED OPTICAL SENSING DEVICE ABLING TO SENSE LUMINOUS INTENSITY AND CHROMATICITY AND AN OPTICAL MEASURING SYSTEM WITH THE HIGH-SPEED OPTICAL SENSING DEVICE
Abstract in simplified Chinese:一种高速光学传感设备,用以量测一待测发光组件之发光强度与色度,此高速光学传感设备包括一光侦测器、一集光透镜组与一分光器。其中,光侦测器系用以侦测此待测发光组件之发光强度。集光透镜组系用以会聚光线至一色彩分析设备。分光器系对准待测发光组件,用以将待测发光组件产生之光线分光投射至光侦测器与集光透镜组。
Abstract:
An apparatus for detecting an ultraviolet blocking material includes a light receiver configured to acquire detection light from a target object; a spectrum signal generator configured to generate spectrum signals based on the detection light; and a processor configured to: select a reference wavelength from a range from about 290 nm to about 400 nm, and detect an ultraviolet blocking material based on a first spectrum signal of a first wavelength less than the reference wavelength and a second spectrum signal of a second wavelength greater than the reference wavelength, the first spectrum signal and the second spectrum signal being generated by the spectrum signal generator.
Abstract:
Spectrum sensors can be continuously calibrated in a manufacturing environment employing a continuously moving platform that carries the spectrum sensors in combination with spatially separated light spectra illuminating a region of the platform. A plurality of spectrum sensors, each including multiple sensor pixels, can be placed on the platform. The spatially separated light spectra can be illuminated over an area of the platform. The plurality of spectrum sensors can be moved with the platform through a region of the spatially separated light spectrum. Each sensor pixel for each of the plurality of spectrum sensors can be calibrated based on response of each spectral channel during passage through the spatially separated light spectra. The entire spectra from a light source can be employed simultaneously to calibrate multiple spectrum sensors in the manufacturing environment.