Abstract:
A multi-well test plate which includes a base and a plurality of well strips. The well strips are removable from the base and the individual wells of each strip are separable. The wells in each strip are joined by T-shaped connecting members which hold the wells in a flat linear array when the well strips are either held in or removed from the base and the T-shaped members are readily severable to permit easy separation of individual wells.
Abstract:
A microtiter plate prepared from a hydrophobic plastic is rendered more hydrophilic by treatment of the surfaces of the wells of the microplate prior to use. The resulting plates are particularly useful in vertical beam photometry.
Abstract:
A microtiter plate reader is disclosed which allows visual examination of the contents of the wells of a microtiter plate having an array of wells. The microtiter plate reader includes supporting means for supporting the microtiter plate with the wells opening generally upwardly and a light emitting surface is adapted to extend under a microtiter plate so held. Regions of reduced light emission on the light emitting surface are arranged in an array corresponding in relative position to a selected portion of the array of microtiter plate wells. Locator means are provided for locating the microtiter plate with respect to the array of regions of reduced light emission to allow selective alignment of the wells with the dark regions, providing a dark background to the bottom of the wells which are then illuminated indirectly. The wells can be illuminated directly when the dark regions are out of alignment with the wells.
Abstract:
A sensitive frontal approach fluorometer which is suitable for measuring the fluorescence of samples in open top microtest wells and which has an optical system for (a) directing an exciting light downwardly into the well's open top to fluorescently excite the sample and (b) detecting the sample's emitted light which passes upwardly through the well's open top.
Abstract:
The disclosure is of an assembly for determining light transmissiveness of a fluid. The assembly comprises a light source, means of holding the fluid in a light-shielded path of the light generated and a means for receiving and measuring the attenuated light passed through the fluid sample. The assembly is simple and highly portable. As such it is convenient for use with little training in places such as a physician's office, for measuring substances in immunoassay reaction mixtures.
Abstract:
Electro-optical apparatus for measurement of fat, protein, lactose and water or solids in milk wherein a milk sample is pumped by a homogenizer into an optical measurement cell. The specimen in the cell is then irradiated with reference and measurement beams at differing wavelengths for fat, protein, lactose and water respectively, and signals are stored indicative of uncorrected concentrations. A scaling and correction circuit includes cross-correction circuitry for compensating the effects on each reading caused by the other constituents. The signals so corrected are then provided in percentage by weight or weight over volume on suitable digital displays.
Abstract:
An imaging device for bright field Fourier ptychographic imaging and fluorescence imaging comprises a first fluorescence illumination source configured to provide excitation light of a first range of wavelengths to a transparent well; an optical system having a pair of objectives positioned oppositely; and an image sensor configured to receive light propagated through the optical system from the transparent well. The image sensor is configured to acquire a sequence of uniquely illuminated intensity measurements of light passing through a sample in the well based on sequential illumination at different illumination angles from a variable illumination source, and further configured to acquire a first fluorescence image of the sample based on light emitted by the sample in response to excitation light of the first range of wavelengths.
Abstract:
Systems for the monitoring of bacterial levels in samples, using spectral analysis of the light diffracted from a substrate with an ordered array of pores having diameters enabling the targets to enter them. The trapping pore array is cyclically illuminated by light of different wavelengths, and the light diffracted from the pore array is imaged by a 2-dimensional detector array, with one pixel, or a small group of pixels receiving light from each associated pore. The temporal sequence of frames provides a series of images, each from the reflection of a different wavelength. A time sequenced readout of the signal from the pixel or pixels associated with each pore region, provides a spectral plot of the reflected light from that pore region. Spectral analysis of the light intensity from this series of different wavelength enables the effective optical thickness (EOT) of each pore to be extracted.
Abstract:
Light emitting diodes (LEDs) are mounted in an array to an upper structure overlying a lower structure with a plurality of light detectors thereon. Each LED is configured to overlie a separate detector. Each LED emits light at a frequency relevant for measuring optical density of a specimen. LEDs having different frequencies are included within the LED array. A corresponding array of detectors is also provided, mounted to the lower structure. Spacing between adjacent LEDs and between adjacent detectors match a spacing between wells in a microtiter plate. Spacing between the lower structure and the upper structure supporting the LEDs is sufficient for the microtiterplate to fit between. Circuitry sequentially fires individual LEDs and gathers optical density data through the detectors for specimens in the wells of the microtiter plate. The structures are then moved to a next adjacent well position on the microtiter plate and the process repeated.
Abstract:
A system and method for fluorescence excitation and detection having distinct optical paths is disclosed. A system for detecting fluorescence comprises a light source(40) that emits an excitation light (48) into an illumination tube (44); a plurality of collection optics (39) located around an aperture (47) in the illumination tube for collecting fluorescence; and a detector (53) for determining the amount of fluorescence. A method for detecting fluorescence comprises emitting an excitation light (48) from a light source (40) into an illumination tube (44); directing the excitation light to an excitation filter (62); illuminating a sample with the excitation light (48) to generate an emission light; and detecting the optical characteristics of the emission light using a plurality of collection optics (39) located around the illumination tube (44).