Abstract:
Einrichtung (10) zur Erzeugung von polarisationsverschränkten Photonen mittels parametrischer Abwärtskonvertierung mit einer Wellenleiterstruktur, die in einem Substrat aus optisch nichtlinearem Material mit periodisch gepolten Bereichen ausgebildet ist, und die zwei Wellenleiter (26, 27) aufweist, wobei im Betrieb dem einen Wellenleiter (26) über einen Strahlteiler (30) ein Anteil α der Pumpphotonen (p) und dem anderen Wellenleiter (27) der restliche Anteil (1- α) der Pumpphotonen (p) zuführbar ist, wobei die Pumpphotonen (p) im einen Wellenleiter (26) in vertikal polarisierte und im anderen Wellenleiter (27) in horizontal polarisierte Signal- (s) und Idlerphotonen (i) zerfallen, die über eine Vereinigungsstrecke (31) einer Vorrichtung (34) zur spektralen Trennung von Signal- und Idlerphotonen zugeführt werden; zumindest dem anderen Wellenleiter (27) ist ein thermisches (40) und/oder elektrooptisches Abstimmelement (28, 29) zur Feineinstellung der Wellenlängenverhältnisse bei der Abwärtskonvertierung zugeordnet; zumindest dem einen Wellenleiter (26) ist eine elektrooptische Einrichtung (29, 39) zur Justierung der relativen Phasenlage zwischen den horizontal und vertikal polarisierten Zuständen, die an der Trennvorrichtung (34) zugeordneten Ausgängen (35, 36) anliegen, zugeordnet.
Abstract:
High speed optical modulators (100) can be made of a reverse biased lateral PN diode (105) formed in a silicon rib optical waveguide (112) disposed on a SOI or other silicon based substrate (100). A PN junction is formed at the boundary of the P and N doped regions (120, 130) The depletion region at the PN junction (106) overlaps with the center of a guided optical mode propagating through the waveguide (110). Electrically modulating a reverse biased lateral PN diode (105) causes a phase shift in an optical wave propagating through the waveguide (110). Prior art forward biased PN and PIN diode modulators have been relatively low speed devices.
Abstract:
An optical waveguide device comprises a waveguide layer for converting an incident light and emitting the converted light. The waveguide layer is provided with a ridge waveguide and slab waveguides formed on both sides of the ridge waveguide with recess portions intervening therebetween. The waveguide layer satisfies multimode conditions with respect to the incident light, and the light transmitted in the ridge waveguide is in single mode.
Abstract:
An optical waveguide device (100) includes a waveguide layer (102) that converts a wavelength of incident light and emits converted light. In the waveguide layer (102), a ridge waveguide (103) and slab waveguides (105) are provided, the slab waveguides (105) being formed on both sides of the ridge waveguide (103) with recess portions (104) intervening therebetween. The waveguide layer (102) satisfied a multi mode condition for the incident light, and light propagating through the ridge waveguides (103) is in a single mode.
Abstract:
An electro-optic device includes a semiconducting layer in which is formed a waveguide, a modulator formed across the waveguide comprising a p-doped region to one side and an n-doped region to the other side of the waveguide, wherein at least one of the doped regions extends from the base of a recess formed in the semiconducting layer. In this way, the doped regions can extend further into the semiconducting layer and further hinder escape of charge carriers without the need to increase the diffusion distance of the dopant and incur an additional thermal burden on the device. In an SOI device, the doped region can extend to the insulating layer. Ideally, both the p and n-doped regions extend from the base of a recess, but this may be unnecessary in some designs. Insulating layers can be used to ensure that dopant extends from the base of the recess only, giving a more clearly defined doped region. The (or each) recess can have non-vertical sides, such as are formed by v-groove etches, A combination of a vertical sidewall at the base of the recess and a non-vertical sidewall at the opening could be used.
Abstract:
An optical to radio frequency detector comprising an optical guide (11 to 14) for receiving two optical signal components having frequencies that differ by an amount corresponding to a radio frequency, and a radio signal guide (15, 16) coupled with an interaction zone (14) of the optical guide for propagating a radio signal from the interaction zone at the radio frequency. The interaction zone (14) of the optical guide comprises an interaction material presenting a second-order non-linear optical polarisation characteristic to the propagation of the optical signal components, and the radio signal guide (15, 16) is in travelling-wave coupling with the interaction zone. The interaction material includes electrically orientated diazobenzene. The radio signal guide (15, 16) comprises an electrically conductive strip (15) juxtaposed with and extending along the interaction zone (14) on one side thereof and an electrically conductive ground plane (16) juxtaposed with and extending along the interaction zone (14) on an opposite side thereof.
Abstract:
A light modulation device comprises a substrate (1), a substrate layer (2), an optical waveguide layer (3) and buffer layers (4), in that order, formed of either all n-type or all p-type compound semiconductor crystal. In orderto capture the light in the optical waveguide layer, the composition ratio of the compound semiconductor is so determined that the refractive index is at least approximately 0.1% higher in the optical waveguide layers than in the substrate layer and in the buffer layers. Furthermore, the carrier density is low in the optical waveguide layer and in the buffer layers, so that the applied voltage is effectively applied mainly to the optical waveguide layer. Due to the construction of the light modulation device, strict control of the etching process is not required, the device has a low absorption loss of light, and it can be made as a monolithic optical integrated circuit.
Abstract:
광 모듈레이터 디바이스 제조 방법은 기판 상에는 n-타입 층을, 상기 n-타입 층의 부분 상에는 제1 산화물 부분을, 상기 n-타입 층의 제2 부분 상에는 제2 산화물 부분을 형성하는 단계; 상기 제1 산화물 부분, 상기 n-타입 층의 평평한 표면의 부분들, 및 상기 제2 산화물 부분의 부분들 위에 제1 마스킹 층을 패턴하는 단계; 제1 p-타입 영역 및 제2 p-타입 영역을 형성하기 위하여 상기 n-타입 층 내에 p-타입 도펀트들을 임플란트하는 단계; 상기 제1 마스킹 층을 제거하는 단계; 상기 제1 산화물 부분, 상기 제1 p-타입 영역의 부분, 및 상기 n-타입 층의 부분 위에 제2 마스킹 층을 패턴하는 단계; 그리고 상기 n-타입 층의 노출된 부분들, 상기 제1 p-타입 영역의 노출된 부분들, 및 상기 n-타입 층의 영역들 그리고 상기 기판과 상기 제2 산화물 부분 사이에 배치된 상기 제2 p-타입 영역 내에 p-타입 도펀트들을 임플란트하는 단계를 포함한다.