Abstract:
According to one aspect of the present invention, a substrate processing system is provided. The system may include a chamber wall enclosing a chamber, a substrate support positioned within the chamber to support a substrate, an electromagnetic radiation source to emit electromagnetic radiation onto the substrate on the substrate support, the electromagnetic radiation causing photoelectrons to be emitted from a material on the substrate, an analyzer to capture the photoelectrons emitted from the substrate, and a magnetic field generator to generate a magnetic field within the chamber and guide the photoelectrons from the substrate to the analyzer.
Abstract:
PROBLEM TO BE SOLVED: To provide a transmission type radiation generating target in which peeling and cracking of a target layer at an interface between a support substrate and the target layer can be suppressed even when the density of incident electrons is increased or when the potential of the target is made higher.SOLUTION: The transmission type radiation generating target including a support substrate 2 and a target layer 3 which is disposed on the support substrate 2 and generates radiation by irradiation with an electron beam is characterized in that: the target layer 3 has an opening 4 for exposing the support substrate 2; and the opening 4 overlaps a position where the irradiation density of the electron beam is maximum.
Abstract:
A method for obtaining a concentrated, monochromatic x-ray beam from a standard x-ray tube or other source of polychromatic emission. X-rays from the anode of the x-ray tube fluoresce an adjoining, independent target that produces a monochromatic spectrum, a portion of which is focused by the x-ray optical system. This two-stage method gives the system considerably versatility without undue loss in signal. The two-stage concentrator makes practical the use of focusing optics in hand-held and portable instruments.
Abstract:
Some embodiments of the present disclosure provide a method that includes colliding a laser with an electron beam to produce backscattered x-rays while the electron beam is traversing a circular arc. This backscattering process is inverse Compton scattering (ICS). ICS x-rays are emitted in the same direction as the electrons. Because this ICS direction is changing as a function of time, the position of the x-ray beam on a detector will change depending on the timing of electron/laser collision. This position change is easily detected and converted to a timing measurement sensitive at the femtosecond scale, converting a very difficult timing measurement of laser pulse, electron pulse, and x-ray pulse synchronization into a simple and robust position measurement.
Abstract:
There is provided an X-ray tube device having a configuration for preventing peeled-off solid lubrication films from scattering in an X-ray tube even when the solid lubrication film peels off a rotary bearing. The X-ray tube device includes: an anode (212) that is irradiated with an electron beam, thereby emitting X-rays; a rotary bearing (304) that rotatably supports the anode (212); a solid lubrication film which is formed on a front surface of the rotary bearing (304) and into which a ferromagnet is mixed from the rotary bearing (304); and an attractor (303) which attracts, with a magnetic force, the solid lubrication film that peels off the rotary bearing (304).
Abstract:
A composite target is provided and is interacted with an electron to generate an X-ray, and an energy of the electron can be changed by controlling a tube voltage at least. The composite target includes a target body and an interposing layer which is connected with the target body. The interposing layer moves a highest peak of an energy spectrum of the X-ray toward a high energy direction. The interposing layer may be a single metal or a metal mixture. Not only a low energy photon of the X-ray can be filtered by the interposing layer, but also a distribution of the low energy photon of the X-ray can be increased by increasing a thickness of the interposing layer. As the tube voltage is enhanced, an amount of a high energy photon of the X-ray generated is dramatically increased. An X-ray tube containing the above composite target is also provided.