Abstract:
A multiple reflecting time-of-flight mass spectrometer (MR-TOF MS) and method of analysis are disclosed. The flight path of ions is folded along a trajectory by electrostatic mirrors. The longer flight path provides higher resolution while maintaining a moderate instrument size.
Abstract:
This invention relates to the analytical electronics used to identify compositions and structures of substances, in particular, to the analyzers comprising at least one mass-spectrometer (MS) and may be applied in such fields as medicine, biology, gas and oil industry, metallurgy, energy, geochemistry, hydrology, ecology. Technical result provides the increase in MS resolution capacity, gain in sensitivity, precision and measurement rates of substances compositions and structures concurrently with enhancement of analyzer functional capabilities, downsizing and mass reduction. A multipath method of mass-spectrometry and a three-dimensional reflecting (-reflecting) method of mass-spectrometry requiring to use a three-dimensional reflecting IO sub-system (- reflector) are developed. A new type of electric field distribution such as transversely discontinuous conic field distribution, including its type of three-dimensional distribution in area of reflection, is proposed to implementing said methods. Versions of devices to implement the claimed method are developed. Proposed schematic ion optical diagrams allow to developing different MS types.
Abstract:
A charged particle trap for trapping of a plurality of charged particles, and a method of operating said trap. The trap includes first and second electrode mirrors (2,3) having a common optical axis (4), the mirrors being arranged in alignment at two extremities thereof. The mirrors are capable, when voltage is applied thereto, of creating respective electric fields defined by key field parameters. The electric fields are configured to reflect charged particles causing their oscillation between the mirrors. The method includes introducing into the trap, along the optical axis, the plurality of charged particles as a beam (10) having pre-determined key beam parameters. The method further includes choosing the key field parameters for at least one of the mirrors such as to induce bunching among charged particles in the beam.
Abstract:
The present invention provides a method of reflecting ions in a multireflection time of flight mass spectrometer comprising providing an ion mirror having a plurality of electrodes, the ion mirror having a cross section with a first, minor axis (Y) and a second, major axis (X) each perpendicular to a longitudinal axis (Z) of the ion mirror which lies generally in the direction of time of flight separation of the ions in the mirror; guiding ions towards the ion mirror; applying a voltage to the electrodes so as to create an electric field which: (a) causes the mean trajectory of the ions to intersect a plane of symmetry of the ion mirror which contains the longitudinal (Z) and major axes (X) of the mirror; (b) causes the ions to reflect in the ion mirror; and (c) causes the ions to exit the ion mirror in a direction such that the mean trajectory of ions passing through the ion mirror has a component of movement in a direction (Y) perpendicular to and diverging from the said plane of symmetry thereof. Apparatus for carrying out the method is also disclosed.
Abstract:
A multi-reflecting TOF mass analyser has two parallel, gridless ion mirrors each having an elongated structure in a drift direction (Z). These ion mirrors provide a folded ion path formed by multiple reflections of ions in a flight direction (X), orthogonal to the drift direction (Z). The analyser also has a further gridless ion mirror for reflecting ions in the drift direction (Z). In operation ions are spatially separated according to mass-to-charge ratio due to their different flight times along the folded ion path and ions having substantially the same mass-to-charge ratio are subjected to energy focusing with respect to the flight and drift directions.
Abstract:
An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U'(r,φ,z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U'(r, φ,z) is the result of a perturbation W to an ideal field U(r, φ,z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, φ,z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than about 2 π radians over an ion detection period Tm.
Abstract:
A tandem time-of-flight mass spectrometer comprises a grounded vacuum housing (7), two reflecting-type mass analyzers (1, 2) coupled via a collision chamber (15) and flight channels (3, 4) electrically floated with respect to the grounded vacuum housing (7). The first reflecting-type mass analyzer (1) receives ionized molecules (ions). These ions pass through the flight channel (3) of the first reflecting-type mass analyzer (1) and are fragmented in the collision chamber (15). The fragmented ions pass through the flight channel (4) of the second reflecting-type mass analyzer (2). Detectors (03, 04) disposed in the collision chamber (15) and in the second reflecting-type mass analyzer (2) detect the spectrum of the first reflecting-type mass analyzer (1) and the spectra of the tandem time-of-flight mass analyzer (100) respectively.