Abstract:
An electronic device may include wireless circuitry with a processor, a transceiver, an antenna, and a front-end module coupled between the transceiver and the antenna. The front-end module may include one or more radio-frequency amplifiers for amplifying a radio-frequency signal. The radio-frequency amplifier may include input transistors cross-coupled with capacitance neutralization transistors and/or coupled to cascode transistors. One or more n-type gain adjustment transistors may be coupled to source terminals of the capacitance neutralization transistors. One or more p-type gain adjustment transistors may be coupled to source terminals of the cascode transistors. One or more processors in the electronic device can selectively activate one or more of the gain adjustment transistors to reduce the gain of the radio-frequency amplifier without degrading noise performance and without altering the in-band frequency response of the radio-frequency amplifier.
Abstract:
Polyphase power amplifiers for load insensitivity are disclosed. In certain embodiments, a polyphase transmit system includes an intermediate frequency transceiver including a first complex mixer that outputs a plurality of intermediate frequency transmit signals of different phases, and an intermediate frequency to radio frequency module including a second complex mixer that generates a plurality of radio frequency transmit signals of different phases based on the plurality of intermediate frequency transmit signals, and a polyphase power amplifier that receives the plurality of radio frequency transmit signals and outputs an amplified radio frequency signal. The polyphase transmit system further includes an antenna that transmits the amplified radio frequency signal.
Abstract:
A bidirectional RF circuit, preferably including a plurality of terminals, a switch, a transistor, a coupler, and a feedback network. The circuit can optionally include a drain matching network, an input matching network, and/or one or more tuning inputs. In some variations, the circuit can optionally include one or more impedance networks, such as an impedance network used in place of the feedback network; in some such variations, the circuit may not include a coupler, switch, and/or input matching network. A method for circuit operation, preferably including operating in an amplifier mode, operating in a rectifier mode, and/or transitioning between operation modes.
Abstract:
Systems and methods that integrate a directional coupling function with directivity that does not have output loss are disclosed. For example, a power amplifier circuit arrangement includes an input terminal to receive an input signal; amplifier circuitry including a first amplifier stage, a second amplifier stage, and a virtual ground node, where an input of the first amplifier stage is coupled to the input terminal, an output of the first amplifier stage is coupled to an input of the second amplifier stage via the virtual ground node, and an output of the second amplifier stage is coupled to the input of the first amplifier stage via feedback circuitry; an output terminal coupled to the output of the second amplifier stage, the output terminal to output an amplified signal; and a directional coupler terminal coupled to the virtual ground node.
Abstract:
A receiver front end capable of receiving and processing intraband non-contiguous carrier aggregate (CA) signals using multiple low noise amplifiers (LNAs) is disclosed herein. A cascode having a “common source” input stage and a “common gate” output stage can be turned on or off using the gate of the output stage. A first switch is provided that allows a connection to be either established or broken between the source terminal of the input stage of each cascode. Further switches used for switching degeneration inductors, gate/sources caps and gate to ground caps for each legs can be used to further improve the matching performance of the invention.
Abstract:
A method for processing a plurality of signals may include amplifying an input signal and generating a wideband signal from the amplified input signal. The method may further include bandpass filtering the generated wideband signal to generate a narrowband signal, and adjusting amplification of the input signal based on a narrowband received signal strength indication of the generated narrowband signal, and/or a wideband received signal strength indication of the generated wideband signal. The amplified input signal may be downconverted to generate the wideband signal. The amplified input signal may be downconverted to an intermediate frequency (IF) and/or to a baseband signal to generate the wideband signal. At least one blocker signal may be bandpass filtered from the amplified input signal.
Abstract:
In a high frequency power amplifier circuit that supplies a bias to an amplifying FET by a current mirror method, scattering of a threshold voltage Vth due to the scattering of the channel impurity concentration of the FET, and a shift of a bias point caused by the scattering of the threshold voltage Vth and a channel length modulation coefficient λ due to a short channel effect are corrected automatically. The scattering of a high frequency power amplifying characteristic can be reduced as a result.
Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component tolerances of an analog radio, a future system architecture (FSA) wireless communication transceiver employs numerous digital signal processing (DSP) techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. Automatic gain control (AGC) functions are provided in the digital domain, so as to provide enhanced phase and amplitude compensation, as well as many other radio frequency (RF) parameters.
Abstract:
An amplifier comprises a first amplifier circuit which amplifies a first signal to output an amplified first signal, a circuit which outputs a second signal corresponding to a difference between the first signal and the amplified first signal, a second amplifier circuit which amplifies the second signal to output an amplified second signal, a combine circuit which outputs an amplified signal by combining the amplified second signal with the amplified first signal, and a controller which controls a supply of a power to the first amplifier circuit and the second amplifier circuit and has a first mode to supply the power to the second amplifier circuit without supplying the power to the first amplifier circuit.
Abstract:
A low noise amplifier circuit (10) includes an attenuator (12) for receiving a calibration signal and generating an attenuated calibration signal. A low noise amplifier (14) amplifies the attenuated calibration signal in calibration mode or amplifies a functional signal in functional mode. In calibration mode, a envelope detector/comparator (16) compares the calibration signal with the output of the low noise amplifier and generates a compensation signal indicating a deviation between the two signals. The gain of the low noise amplifier is adjusted responsive to the compensation signal.