Abstract:
A method for the directional solidification of silicon or other materials. A cooled plate is lowered into a silicon melt and an ingot of solid silicon is solidified downwards.
Abstract:
Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tapered tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.
Abstract:
An improved mechanical arrangement controls the introduction of silicon particles into an EFG (Edge-defined Film-fed Growth) crucible/die unit (20A) for melt replenishment during a crystal growth run. A feeder unit (124) injects silicon particles upwardly through a center hub (114) of the crucible/die unit (20A) and the mechanical arrangement intercepts the injected particles and directs them so that they drop into the melt in a selected region of the crucible and at a velocity which reduces splashing, whereby to reduce the likelihood of interruption of the growth process due to formation of solid mass of silicon on the center hub (114) and adjoining components. The invention also comprises use of a Faraday ring (300) to alter the ratio of the electrical currents flowing through primary (296) and secondary (298) induction heating coils that heat the crucible die unit (20A) and the mechanical arrangement.
Abstract:
A shaper (2) is arranged within a shaping vessel (1). A raw material for a crystal is inserted into the shaping vessel (1) and a crystal melt (5) is formed by setting it in a predetermined atmosphere and heating it. A mechanical force F1 is applied to the crystal melt (5), which is present on the upper surface of the shaper (2), by a pressuring member (4) from above. The crystal melt (5) has nowhere to escape but a gap (3) formed by the shaper( 2), so it is injected into that gap (3) as shown by the arrow. This method of fabricating a shaped crystal is suitable for fabricating a monocrystal or multicrystal semiconductor from a material such as silicon, germanium, or bismuth telluride.
Abstract:
A single crystal dome is formed from a surface of revolution and grown from a liquid material on a linear die surface wettable by the molten material. A seed crystal is supported in a position spaced from an axis of revolution which lies in the plane of the wettable surface, and the seed crystal is rotated around the axis of revolution to generate a curved surface having a predetermined radius of curvature. The seed crystal is supported in a predetermined orientation of one of its axes with respect to the wetted surface of commencement of growth.
Abstract:
Es wird ein Verfahren zur Herstellung von Siliciumstäben mit einer Kolumnarstruktur aus einkristallinen Kristall bezirken mit kristallographischer Vorzugsorientierung an gegeben. Aus einem Siliciumreservoir wird schmelzflüssiges Silicium in eine Kristallisationskammer überführt, welche durch in Form des gewünschten Stabquerschnittes fugen dicht angeordnete Rollen gebildet wird. Dort bildet das Sil icium zunächst eine stabile Außenschale aus erstarrtem Mat erial aus und wird, während es weiter durchkristallisiert, nach unten abgezogen und von den Rollen freigegeben. Wegen des kurzen Kontaktes mit einer Gefäßwandung wird ein be sonders verunreinigungsarmer Siliciumstab erhalten.
Abstract:
Es wird ein Verfahren zur Herstellung von Siliciumstäben mit einer Kolumnarstruktur aus einkristallinen Kristallbezirken mit kristallographischer Vorzugsorientierung angegeben. Aus einem Siliciumreservoir wird schmelzflüssiges Silicium in eine Kristallisationskammer überführt, welche durch in Form des gewünschten Stabquerschnittes fugendicht angeordnete Rollen gebildet wird. Dort bildet das Silicium zunächst eine stabile Außenschale aus erstarrtem Material aus und wird, während es weiter durchkristallisiert, nach unten abgezogen und von den Rollen freigegeben. Wegen des kurzen Kontaktes mit einer Gefäßwandung wird ein besonders verunreinigungsarmer Siliciumstab ernalten.