Abstract:
Various exemplary embodiments provide protocell nanostructures and methods for constructing and using the protocell nanostructures. In one embodiment, the protocell nanostructures can include a core-shell structure including a porous particle core surrounded by a shell of lipid bilayer(s). The protocell can be internalized in a bioactive cell. Various cargo components, for example, drugs, can be loaded in and released from the porous particle core of the protocell(s) and then delivered within the bioactive cell.
Abstract:
The present disclosure relates to protocells that are useful in the treatment and prevention of viral infections, including but not limited to infections caused by a Hendra virus and Nipah virus (NiV). The present disclosure relates to protocells that are useful in the treatment of bacterial infections, including antibiotic-resistant bacterial infections. The protocells are coated with a lipid bi- or multilayer comprising at least one moiety that targets a viral cellular receptor and at least one moiety that ruptures a virally-infected cell membrane. The present disclosure further relates to novel mesoporous metal oxide nanoparticles and related protocells that are useful in the treatment and/or prevention of a wide variety of disorders, including a cancer or a bacterial or viral infection. Such nanoparticles and protocells can be functionalized to allow for synergistic loading of a wide variety of active ingredients.
Abstract:
The present invention is directed to protocells for specific targeting of hepatocellular and other cancer cells which comprise a nanoporous silica core with a supported lipid bilayer; at least one agent which facilitates cancer cell death (such as a traditional small molecule, a macromolecular cargo (e.g. siRNA or a protein toxin such as ricin toxin A-chain or diphtheria toxin A-chain) and/or a histone-packaged plasmid DNA disposed within the nanoporous silica core (preferably supercoiled in order to more efficiently package the DNA into protocells) which is optionally modified with a nuclear localization sequence to assist in localizing protocells within the nucleus of the cancer cell and the ability to express peptides involved in therapy (apoptosis/cell death) of the cancer cell or as a reporter, a targeting peptide which targets cancer cells in tissue to be treated such that binding of the protocell to the targeted cells is specific and enhanced and a fusogenic peptide that promotes endosomal escape of protocells and encapsulated DNA. Protocells according to the present invention may be used to treat cancer, especially including hepatocellular (liver) cancer using novel binding peptides (c-MET peptides) which selectively bind to hepatocellular tissue or to function in diagnosis of cancer, including cancer treatment and drug discovery.
Abstract:
The invention provides novel antibiotic protocells comprising mesoporous nanoparticles encapsulated within a lipid bi- or multilayer. The nanoparticles have pore sizes and surface chemistries that enable facile adsorption and intracellular presentation of antibiotics which are effective in the treatment of a wide variety of bacterial infections, including F. tularensis, B. pseudomallei and P. aeruginosa -related infections. Related pharmaceutical compositions and methods of treatment are also provided.
Abstract:
Various exemplary embodiments provide protocell nanostructures and methods for constructing and using the protocell nanostructures. In one embodiment, the protocell nanostructures can include a core-shell structure including a porous particle core surrounded by a shell of lipid bilayer(s). The protocell can be internalized in a bioactive cell. Various cargo components, for example, drugs, can be loaded in and released from the porous particle core of the protocell(s) and then delivered within the bioactive cell.
Abstract:
The present invention relates to mesoporous alum nanoparticles which can be used as a universal platform for antigen adsorption, presentation and delivery to provide immune compositions, including vaccines and to generate an immune response (preferably, both humoral and cell mediated immune response), preferably a heightened immune response to the presentation of one or more antigens to a patient or subject.
Abstract:
The present invention is directed to protocells for specific targeting of hepatocellular and other cancer cells which comprise a nanoporous silica core with a supported lipid bilayer; at least one agent which facilitates cancer cell death (such as a traditional small molecule, a macromolecular cargo (e.g. siRNA or a protein toxin such as ricin toxin A-chain or diphtheria toxin A-chain) and/or a histone-packaged plasmid DNA disposed within the nanoporous silica core (preferably supercoiled in order to more efficiently package the DNA into protocells) which is optionally modified with a nuclear localization sequence to assist in localizing protocells within the nucleus of the cancer cell and the ability to express peptides involved in therapy (apoptosis/cell death) of the cancer cell or as a reporter, a targeting peptide which targets cancer cells in tissue to be treated such that binding of the protocell to the targeted cells is specific and enhanced and a fusogenic peptide that promotes endosomal escape of protocells and encapsulated DNA. Protocells according to the present invention may be used to treat cancer, especially including hepatocellular (liver) cancer using novel binding peptides (c-MET peptides) which selectively bind to hepatocellular tissue or to function in diagnosis of cancer, including cancer treatment and drug discovery.