Abstract:
Light emitting systems are disclosed. The light emitting system includes an electroluminescent device that emits light at a first wavelength from a top surface of the electroluminescent device. The light emitting system further includes a construction proximate a side of the electroluminescent device for blocking light at the first wavelength that would otherwise exit the side. The light emitting system further includes a re-emitting semiconductor construction that includes a II-VI potential well. The re-emitting semiconductor construction receives the first wavelength light that exits the electroluminescent device and converts at least a portion of the received light to light of a second wavelength. The integrated emission intensity of all light at the second wavelength that exit the light emitting system is at least 4 times the integrated emission intensity of all light at the first wavelength that exit the light emitting system.
Abstract:
Re-emitting semiconductor constructions (RSCs) for use with LEDs, and related devices, systems, and methods are disclosed. A method of fabrication includes providing a semiconductor substrate, forming on a first side of the substrate a semiconductor layer stack, attaching a carrier window to the stack, and removing the substrate after the attaching step. The stack includes an active region adapted to convert light at a first wavelength λ 1 to visible light at a second wavelength λ 2 , the active region including at least a first potential well. The attaching step is carried out such that the stack is disposed between the substrate and the carrier window, which is transparent to the second wavelength λ 2 . The carrier window may also have a lateral dimension greater than that of the stack. The removal step is carried out so as to provide an RSC carrier device that includes the carrier window and the stack.
Abstract:
An optical bonding composition and LED light source comprising the composition are disclosed, as well as a method of making the LED light source. The LED light source may comprise: an LED die; an optical element optically coupled to the LED die; and a bonding layer comprising an amorphous organopolysiloxane network, the organopolysiloxane network comprising a silsesquioxane portion derived from (R 1 SiO 1.5 ) n wherein R 1 is an organic group and n is an integer of at least 10; the bonding layer bonding the LED die and the optical element together. Efficiency of the LED light source may be increased when using an optical extractor as the optical element.
Abstract:
A multilayer construction is disclosed. The multilayer construction includes a -ll-VI semiconductor layer (110)x and a Si 3 N 4 layer (120) disposed directly on the ll-VI semiconductor layer. To improve the adhesion of the S13N4 layer (120) a native oxide on the ll-VI semiconductor layer is removed.
Abstract:
Light emitting systems are disclosed. The light emitting system includes an electroluminescent device that emits light at a first wavelength from a top surface of the electroluminescent device. The light emitting system further includes a construction proximate a side of the electroluminescent device for blocking light at the first wavelength that would otherwise exit the side. The light emitting system further includes a re-emitting semiconductor construction that includes a II-VI potential well. The re-emitting semiconductor construction receives the first wavelength light that exits the electroluminescent device and converts at least a portion of the received light to light of a second wavelength. The integrated emission intensity of all light at the second wavelength that exit the light emitting system is at least 4 times the integrated emission intensity of all light at the first wavelength that exit the light emitting system.
Abstract:
Light emitting systems are disclosed. The light emitting system includes an LED that emits light at a first wavelength. A primary portion of the emitted first wavelength light exits the LED from a top surface of the LED that has a minimum lateral dimension Wmin. The remaining portion of the emitted first wavelength light exits the LED from one or more sides of the LED that has a maximum edge thickness Tmax (122, 124). The ratio Wmin/Tmax is at least 30. The ligth emitting system further includes a re-emitting semiconductor construction that includes a semiconductor potential well. The re-emitting semiconductor construction receives the first wavelength light that exits the LED from the top surface and converts at least a portion of the received light to light of a second wavelength. The integrated emission intensity of all light at the second wavelength that exit the light emitting system is at least 4 times the integrated emission intensity of all light at the first wavelength that exit the light emitting system.
Abstract:
A method of increasing the efficiency of a multiphoton absorption process and apparatus. The method includes: providing a photoreactive composition; providing a source of sufficient light for simultaneous absorption of at least two photons; exposing the photoreactive composition to at least one transit of light from the light source; and directing at least a portion of the first transit of the light back into the photoreactive composition using at least one optical element, wherein a plurality of photons not absorbed in at least one transit are used to expose the photoreactive composition in a subsequent transit.
Abstract:
Light emitting systems are disclosed. The light emitting system includes an LED that emits light at a first wavelength and includes a pattern that enhances emission of light from a top surface of the LED and suppresses emission of light from one or more sides of the LED. The light emitting system further includes a re-emitting semiconductor construction that includes a II-VI potential well. The re-emitting semiconductor construction receives the first wavelength light that exits the LED and converts at least a portion of the received light to light of a second wavelength. The integrated emission intensity of all light at the second wavelength that exit the light emitting system is at least 4 times the integrated emission intensity of all light at the first wavelength that exit the light emitting system.
Abstract:
Disclosed herein is an optical bonding composition that may be used in optical applications. An LED light source that utilizes the composition is also disclosed, as well as a method of making it. The LED light source may comprise: an LED die; an optical element optically coupled to the LED die; and a bonding layer comprising surface-modified metal oxide nanoparticles in an amorphous silicate network, the bonding layer bonding the LED die and the optical element together. Efficiency of the LED light source may be increased when using an optical extractor as the optical element.
Abstract:
A method for enhancing photoreactive absorption in a specified volume element of a photoreactive composition. In one embodiment, the method includes: providing a photoreactive composition; providing a source of light (preferably, a pulsed laser) sufficient for simultaneous absorption of at least two photons by the photoreactive composition, the light source having a beam capable of being divided; dividing the light beam into a plurality of equal path length exposure beams; and focusing the exposure beams in a substantially non-counter propagating manner at a single volume element of the photoreactive composition simultaneously to react at least a portion of the photoreactive composition. In another embodiment, a method includes: providing a photoreactive composition capable of photoreactive absorption; and exposing the photoreactive composition to laser light from a plurality of substantially non-counter propagating directions simultaneously, wherein the light overlaps in time and space at a predetermined focus spot.