Abstract:
An optical element and module for the projection of a light beam, and motor vehicle lamp including a plurality of such modules An optical element for the projection of a light beam comprises a solid body (1) of transparent material in which is formed a cavity (13) able to receive a light source (10), the cavity (13) extending along the principal axis (z) of the transparent body (1) and being delimited by a radially inner surface (3) and a terminal surface (2) of the transparent body (1). The surfaces (2, 3) are able to receive separate respective portions (I, II) of the light flux generated by the source (10). The transparent body (1) further has a radially outer surface (4) which surrounds the radially inner surface (3). The radially outer surface (4) reflects the portion of the light flux (I) coming from the radially inner surface (3) along a direction substantially parallel to the principal axis (z). The transparent body (1) has, on the opposite side, a central surface (6) and an annular surface (5) surrounding the central surface (6), able to receive that portion (II) of the light flux and the reflected portion of the light flux (I) respectively and to transmit these light flux portions (I, II) in directions having predetermined orientations with respect to the principal axis (z). At least one of the surfaces is rotationally asymmetric with respect to the principal axis (z) of the transparent body (1). The surfaces cooperate in such a way as to shape the overall light flux (I, II) emitted by the central and annular surfaces (6, 5) into a light intensity distribution having different divergences in two 25 directions perpendicular to one another and to the principal axis (z).
Abstract:
An optical element and module for the projection of a light beam, and motor vehicle lamp including a plurality of such modules An optical element for the projection of a light beam comprises a solid body (1) of transparent material in which is formed a cavity (13) able to receive a light source (10), the cavity (13) extending along the principal axis (z) of the transparent body (1) and being delimited by a radially inner surface (3) and a terminal surface (2) of the transparent body (1). The surfaces (2, 3) are able to receive separate respective portions (I, II) of the light flux generated by the source (10). The transparent body (1) further has a radially outer surface (4) which surrounds the radially inner surface (3). The radially outer surface (4) reflects the portion of the light flux (I) coming from the radially inner surface (3) along a direction substantially parallel to the principal axis (z). The transparent body (1) has, on the opposite side, a central surface (6) and an annular surface (5) surrounding the central surface (6), able to receive that portion (II) of the light flux and the reflected portion of the light flux (I) respectively and to transmit these light flux portions (I, II) in directions having predetermined orientations with respect to the principal axis (z). At least one of the surfaces (2, 3, 5, 6) is rotationally asymmetric with respect to the principal axis (z) of the transparent body (1). The surfaces (2, 3, 5, 6) cooperate in such a way as to shape the overall light flux (I, II) emitted by the central and annular surfaces (6, 5) into a light intensity distribution having different divergences in two 25 directions perpendicular to one another and to the principal axis (z).
Abstract:
A three-dimensional structure in the form of filament (6) for an incandescent lamp comprises a plurality of tungsten microfilaments (6A) having micrometric and/or nanometric dimensions, to form a photonic crystal structure. The microfilaments (6A) are preferably arranged so as to form a series of microcavities in the three-dimensional structure (6), a means having a refraction index different from that of tungsten being present within said microcavities. The described arrangement makes it possible to prevent propagation and spontaneous emission of IR radiation of specific wavelenghts e allows at the same time propagation and spontaneous emission of visible radiation.
Abstract:
A three-dimensional structure in the form of filament (6) for an incandescent lamp comprises a plurality of tungsten microfilaments (6A) having micrometric and/or nanometric dimensions, to form a photonic crystal structure. The microfilaments (6A) are arranged so as to form a series of microcavities in the three-dimensional structure (6), a means having a refraction index different from that of tungsten being present within said microcavities. The described arrangement makes it possible to prevent propagation and spontaneous emission of IR radiation of specific wavelenghts e allows at the same time propagation and spontaneous emission of visible radiation.
Abstract:
A system for the production of electrical energy, comprising: a combustion chamber (14) made of material that is able to withstand high temperatures, an injection device (16) connected to said combustion chamber (14) by means of an injection conduit (15), means (17) for supplying combustion support substance into the combustion chamber (14) and means (18) for the removal of gaseous combustion products, means (26) for the selective emission of radiation onto the outer surface of the combustion chamber (14). The combustion chamber (14) is enclosed in a conversion chamber (20) within which are maintained at sub-atmospheric pressure conditions, so that a substantial part of the heat developed by the combustion reaction is converted into electromagnetic radiation.0 The radiation emitted inside the conversion chamber (20) impacts on conversion means (24) which convert electromagnetic radiation into electricenergy. Said conversion means are preferably constituted by photovoltaic cells with a band gap in the order of 0.5 -0.8eV.
Abstract:
A system for the production of electrical energy, comprising: a combustion chamber (14) made of material that is able to withstand high temperatures, an injection device (16) connected to said combustion chamber (14) by means of an injection conduit (15), means (17) for supplying combustion support substance into the combustion chamber (14) and means (18) for the removal of gaseous combustion products, means (26) for the selective emission of radiation onto the outer surface of the combustion chamber (14). The combustion chamber (14) is enclosed in a conversion chamber (20) within which are maintained sub-atmospheric pressure conditions, so that a substantial part of the heat developed by the combustion reaction is converted into electromagnetic radiation.