Abstract:
Ge and III-V channel semiconductor devices having maximized compliance and free surface relaxation and methods of fabricating such Ge and III-V channel semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a semiconductor substrate. The semiconductor fin has a central protruding or recessed segment spaced apart from a pair of protruding outer segments along a length of the semiconductor fin. A cladding layer region is disposed on the central protruding or recessed segment of the semiconductor fin. A gate stack is disposed on the cladding layer region. Source/drain regions are disposed in the pair of protruding outer segments of the semiconductor fin.
Abstract:
Disclosed herein are stacked channel structures for metal oxide semiconductor field effect transistors (MOSFETs) and related circuit elements, computing devices, and methods. For example, a stacked channel structure may include: a semiconductor substrate having a substrate lattice constant; a fin extending away from the semiconductor substrate, the fin having an upper region and a lower region; a first transistor in the lower region, wherein the first transistor has a first channel, the first channel has a first lattice constant, and the first lattice constant is different from the substrate lattice constant; and a second transistor in the upper region, wherein the second transistor has a second channel, the second channel has a second lattice constant, and the second lattice constant is different from the substrate lattice constant.
Abstract:
Embodiments of the present disclosure provide techniques and configurations associated with conversion of thin transistor elements from silicon (Si) to silicon germanium (SiGe). In one embodiment, a method includes providing a semiconductor substrate having a channel body of a transistor device disposed on the semiconductor substrate, the channel body comprising silicon, forming a cladding layer comprising germanium on the channel body, and annealing the channel body to cause the germanium to diffuse into the channel body. Other embodiments may be described and/or claimed.
Abstract:
Techniques are disclosed for incorporating high mobility strained channels into fin-based transistors (e.g., FinFETs such as double-gate, trigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, silicon germanium (SiGe) is cladded onto silicon fins to provide a desired stress, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and the cladding deposition can occur at a plurality of locations within the process flow. In some cases, the built-in stress from the cladding layer may be enhanced with a source/drain stressor that compresses both the fin and cladding layers in the channel. In some cases, an optional capping layer can be provided to improve the gate dielectric / semiconductor interface. In one such embodiment, silicon is provided over a SiGe cladding layer to improve the gate dielectric / semiconductor interface.
Abstract:
Uniaxially strained nanowire structures are described. For example, a semiconductor device includes a plurality of vertically stacked uniaxially strained nanowires disposed above a substrate. Each of the uniaxially strained nanowires includes a discrete channel region disposed in the uniaxially strained nanowire. The discrete channel region has a current flow direction along the direction of the uniaxial strain. Source and drain regions are disposed in the nanowire, on either side of the discrete channel region. A gate electrode stack completely surrounds the discrete channel regions.
Abstract:
Nanowire structures having wrap-around contacts are described. For example, a nanowire semiconductor device includes a nanowire disposed above a substrate. A channel region is disposed in the nanowire. The channel region has a length and a perimeter orthogonal to the length. A gate electrode stack surrounds the entire perimeter of the channel region. A pair of source and drain regions is disposed in the nanowire, on either side of the channel region. Each of the source and drain regions has a perimeter orthogonal to the length of the channel region. A first contact completely surrounds the perimeter of the source region. A second contact completely surrounds the perimeter of the drain region.
Abstract:
Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
Abstract:
A method and a device made according to the method. The method comprises providing a substrate including a first material, and providing a fin including a second material, the fin being disposed on the substrate and having a device active portion, the first material and the second material presenting a lattice mismatch between respective crystalline structures thereof. Providing the fin includes providing a biaxially strained film including the second material on the substrate; and removing parts of the biaxially strained film to form a substantially uniaxially strained fin therefrom.
Abstract:
Embodiments of the present invention are directed to formation of fins with different active channel heights in a tri-gate or a Fin-FET device. In an embodiment, at least two fins are formed on a front side of the substrate. A gate structure extends over a top surface and a pair of sidewalls of at least a portion of the fins. In an embodiment, the substrate is thinned to expose the bottom surface of the fins. Next, backside etching may be performed on each fin to form active channel regions. The fins may be recessed to different depths, forming active channel regions with differing heights.
Abstract:
Techniques are disclosed for incorporating high mobility strained channels into fin-based NMOS transistors (e.g., FinFETs such as double-gate, frigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, a germanium or silicon germanium film is cladded onto silicon fins in order to provide a desired tensile strain in the core of the fin, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and cladding deposition can occur at a plurality of locations within typical process flow, in various embodiments, fins may be formed with a minimum width (or later thinned) so as to improve transistor performance. In some embodiments, a thinned fin also increases tensile strain across the core of a cladded fin. In some cases, strain in the core may be further enhanced by adding an embedded silicon epitaxial source and drain.