Abstract:
Ge and III-V channel semiconductor devices having maximized compliance and free surface relaxation and methods of fabricating such Ge and III-V channel semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a semiconductor substrate. The semiconductor fin has a central protruding or recessed segment spaced apart from a pair of protruding outer segments along a length of the semiconductor fin. A cladding layer region is disposed on the central protruding or recessed segment of the semiconductor fin. A gate stack is disposed on the cladding layer region. Source/drain regions are disposed in the pair of protruding outer segments of the semiconductor fin.
Abstract:
Group III-V semiconductor devices having asymmetric source and drain structures and their methods of fabrication are described. In an example, an integrated circuit structure includes a gallium arsenide layer on a substrate. A channel structure is on the gallium arsenide layer. The channel structure includes indium, gallium and arsenic. A source structure is at a first end of the channel structure and a drain structure is at a second end of the channel structure. The drain structure has a wider band gap than the source structure. A gate structure is over the channel structure.
Abstract:
Thin film core-shell fin and nanowire transistors are described. In an example, an integrated circuit structure includes a fin on an insulator layer above a substrate. The fin has a top and sidewalls. The fin is composed of a first semiconducting oxide material. A second semiconducting oxide material is on the top and sidewalls of the fin. A gate electrode is over a first portion of the second semiconducting oxide material on the top and sidewalls of the fin. A first conductive contact is adjacent the first side of the gate electrode, the first conductive contact over a second portion of the second semiconducting oxide material on the top and sidewalls of the fin. A second conductive contact is adjacent the second side of the gate electrode, the second conductive contact over a third portion of the second semiconducting oxide material on the top and sidewalls of the fin.
Abstract:
Transistor devices having a doped buffer or sub-structure between an active channel and a substrate. In one embodiment, a p-type dopant, such as magnesium, zinc, carbon, beryllium, and the like, may be introduced in the formation of the sub-structure, wherein the dopant may act as a p/n junction at the active channel to source and drain interfaces and decrease the off-state leakage path. In another embodiment, the material used for the formation of the doped substructure may be substantially the same as the material, without the dopant, used for the formation of the active channel, such that no heterojunction will be formed which could result in crystalline imperfections.
Abstract:
Methods of forming hetero-layers with reduced surface roughness and bulk defect density on non-native surfaces and the devices formed thereby are described. In one embodiment, the method includes providing a substrate having a top surface with a lattice constant and depositing a first layer on the top surface of the substrate. The first layer has a top surface with a lattice constant that is different from the first lattice constant of the top surface of the substrate. The first layer is annealed and polished to form a polished surface. A second layer is then deposited above the polished surface.
Abstract:
Transistor structures having channel regions comprising alternating layers of compressively and tensilely strained epitaxial materials are provided. The alternating epitaxial layers can form channel regions in single and multigate transistor structures. In alternate embodiments, one of the two alternating layers is selectively etched away to form nanoribbons or nanowires of the remaining material. The resulting strained nanoribbons or nanowires form the channel regions of transistor structures. Also provided are computing devices comprising transistors comprising channel regions comprised of alternating compressively and tensilely strained epitaxial layers and computing devices comprising transistors comprising channel regions comprised of strained nanoribbons or nanowires.
Abstract:
Techniques are disclosed for forming transistor devices having source and drain regions with high concentrations of boron doped germanium. In some embodiments, an in situ boron doped germanium, or alternatively, boron doped silicon germanium capped with a heavily boron doped germanium layer, are provided using selective epitaxial deposition in the source and drain regions and their corresponding tip regions. In some such cases, germanium concentration can be, for example, in excess of 50 atomic % and up to 100 atomic %, and the boron concentration can be, for instance, in excess of 1E20 cm -3 . A buffer providing graded germanium and/or boron concentrations can be used to better interface disparate layers. The concentration of boron doped in the germanium at the epi-metal interface effectively lowers parasitic resistance without degrading tip abruptness. The techniques can be embodied, for instance, in planar or non-planar transistor devices.
Abstract:
A method and a device made according to the method. The method comprises providing a substrate including a first material, and providing a fin including a second material, the fin being disposed on the substrate and having a device active portion, the first material and the second material presenting a lattice mismatch between respective crystalline structures thereof. Providing the fin includes providing a biaxially strained film including the second material on the substrate; and removing parts of the biaxially strained film to form a substantially uniaxially strained fin therefrom.
Abstract:
Conductivity improvements in III-V semiconductor devices are described. A first improvement includes a barrier layer that is not coextensively planar with a channel layer. A second improvement includes an anneal of a metal/Si, Ge or SiliconGermanium/III-V stack to form a metal-Silicon, metal-Germanium or metal-SiliconGermanium layer over a Si and/or Germanium doped III-V layer. Then, removing the metal layer and forming a source/drain electrode on the metal-Silicon, metal-Germanium or metal-SiliconGermanium layer. A third improvement includes forming a layer of a Group IV and/or Group VI element over a III-V channel layer, and, annealing to dope the III-V channel layer with Group IV and/or Group VI species. A fourth improvement includes a passivation and/or dipole layer formed over an access region of a III-V device.
Abstract:
Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.