Abstract:
An ignition facilitated electrodeless sealed high intensity illumination device is configured to receive a laser beam from a continuous wave (CW) laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber has an ingress window disposed within a wall of a chamber interior surface configured to admit the laser beam into the chamber, a plasma sustaining region, and a high intensity light egress window configured to emit high intensity light from the chamber. The CW laser beam is producible by a CW laser below 250 Watts configured to produce a wavelength below 1100 nm. The device is configured to focus the laser beam to a full width at half maximum (FWHM) beam waist of 1-15 microns 2 and a Rayleigh length of 6 microns or less, and the plasma is configured to be ignited by the CW laser beam.
Abstract:
An apparatus and a method for operating a sealed high intensity illumination lamp configured to receive a laser beam from a laser light source. The lamp includes a sealed chamber configured to contain an ionizable medium having a plasma sustaining region, and a plasma ignition region. A high intensity light egress window emits high intensity light from the chamber. A substantially flat ingress window located within a wall of the chamber admits the laser beam into the chamber. The lamp includes means for controlled increasing and decreasing a pressure level within the sealed chamber while the lamp is producing the high intensity illumination.
Abstract:
An ignition facilitated electrodeless sealed high intensity illumination device is disclosed. The device is configured to receive a laser beam from a continuous wave (CW) laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber has an ingress window disposed within a wall of a chamber interior surface configured to admit the laser beam into the chamber, a plasma sustaining region, and a high intensity light egress window configured to emit high intensity light from the chamber. A path of the CW laser beam from the laser light source through the ingress window to a focal region within the chamber is direct. The ingress window is configured to focus the laser beam to within a predetermined volume, and the plasma is configured to be ignited by the CW laser beam, optionally by heating of a non-electrode ignition agent located entirely within the chamber.
Abstract:
A sealed high intensity illumination device configured to receive a laser beam from a laser light source and method for making the same are disclosed. The device includes a sealed cylindrical chamber configured to contain an ionizable medium. The chamber has a cylindrical wall, with an ingress and an egress window disposed opposite the ingress window. A tube insert is disposed within the chamber formed of an insulating material. The insert is configured to receive the laser beam within the insert inner diameter.
Abstract:
A method and apparatus for a sealed high intensity illumination device are disclosed. The device is configured to receive a laser beam from a laser light source. The device has a sealed chamber configured to contain an ionizable medium. The chamber has a substantially flat ingress window disposed within a wall of the integral reflective chamber interior surface configured to admit the laser beam into the chamber, a plasma sustaining region, a plasma ignition region, and a high intensity light egress window configured to emit high intensity light from the chamber. The chamber has an integral reflective chamber interior surface configured to reflect high intensity light from the plasma sustaining region to the egress window. There is a direct path of the laser beam from the laser light source through the lens and ingress window to the lens focal region.
Abstract:
An illumination source includes a laser driver unit configured to emit a plasma sustaining beam. An ingress collimator receives the plasma sustaining beam and produces a collimated ingress beam. A focusing optic receives the collimated ingress beam and produce a focused sustaining beam. A sealed lamp chamber contains an ionizable media that, once ignited, forms a high intensity light emitting plasma having a waist size smaller than 150 microns. The sealed lamp chamber further includes an ingress window configured to receive the focused sustaining beam and an egress window configured to emit the high intensity light. An ignition source is configured to ignite the ionizable media, and an exit fiber is configured to receive and convey the high intensity light. The high intensity light is white light with a black body spectrum, and the exit fiber has a diameter in the range of 200-500 micrometers.
Abstract:
A sealed high intensity illumination device configured to receive a laser beam from a laser light source comprising a sealed chamber configured to contain an ionizable medium, the chamber further comprising a plasma sustaining region; a plasma ignition region; a high intensity light egress window configured to emit high intensity light from the chamber; an integral reflective chamber interior surface configured to reflect high intensity light from the plasma sustaining region to the egress window; and a substantially flat ingress window disposed within a wall of the integral reflective chamber interior surface configured to admit the laser beam into the chamber; and means for adjusting a pressure level within the sealed chamber, wherein a path of the laser beam from the laser light source through the ingress window to a focal region within the chamber is direct.
Abstract:
A sealed high intensity illumination system comprising a laser light source disposed external to a sealed chamber and configured to direct a laser light beam directly into the sealed chamber; the sealed chamber configured to contain an ionizable medium, the chamber further comprising a substantially flat ingress window disposed within a wall of an integral reflective chamber interior surface configured to admit the laser beam into the chamber; a plasma sustaining region; a plasma ignition region; a high intensity light egress window configured to emit high intensity light from the chamber the integral reflective chamber interior surface configured to reflect high intensity light from the plasma sustaining region to the egress window and a viewing window disposed within the wall of the integral reflective chamber interior surface, wherein a path of the laser beam from the laser light source through the ingress window to a focal region within the chamber is direct.