Abstract:
The photo detector (100, 300, 500, 600, 700, 900) comprises a photo transistor (102, 902). The photo transistor has a light sensitive region (112, 910) for controlling the transistor action of the photo transistor. The photo detector further comprises a dielectric layer (118). The dielectric layer is in contact with the photo transistor. The photo detector further comprises a grating pattern (114, 604, 914, 1010) in contact with the dielectric layer. The grating layer and the dielectric layer are adapted for focusing electromagnetic radiation in the light sensitive region.
Abstract:
A multi- junction opto-electronic device comprising a stack of wavelength selective absorption layers is proposed. The absorption layers comprise each a first layer with a grating of a specific pitch defining the wavelength of the incident light to be absorbed within a subjacent second electrically active layer itself on a third electrically inactive layer. The second electrically active layer within the different absorption layers is in electrical connection with lateral contacts to extract the electrical charge carriers generated by the absorbed incident light within the active layer. The grating within the first layer of the absorption layers is defined by periodic stripes of specific width depending on the wavelength to be absorbed by the respective absorption layers. The period of the stripes alignment is defined by the pitch of the grating. Advantageously, ordinary silicon technology can be used.
Abstract:
The photo detector (100, 300, 500, 600, 700, 900) comprises a photo transistor (102, 902). The photo transistor has a light sensitive region (112, 910) for controlling the transistor action of the photo transistor. The photo detector further comprises a dielectric layer (118). The dielectric layer is in contact with the photo transistor. The photo detector further comprises a grating pattern (114, 604, 914, 1010) in contact with the dielectric layer. The grating layer and the dielectric layer are adapted for focusing electromagnetic radiation in the light sensitive region.
Abstract:
A multi- junction opto-electronic device comprising a stack of wavelength selective absorption layers is proposed. The absorption layers comprise each a first layer with a grating of a specific pitch defining the wavelength of the incident light to be absorbed within a subjacent second electrically active layer itself on a third electrically inactive layer. The second electrically active layer within the different absorption layers is in electrical connection with lateral contacts to extract the electrical charge carriers generated by the absorbed incident light within the active layer. The grating within the first layer of the absorption layers is defined by periodic stripes of specific width depending on the wavelength to be absorbed by the respective absorption layers. The period of the stripes alignment is defined by the pitch of the grating. Advantageously, ordinary silicon technology can be used.