Abstract:
A system and method of optical spectrum analysis that circumvents the trade-off between resolution and sensitivity by combining two spectral measurements: a first spectrum (102) from first spectral measurement means (240), having high resolution and low sensitivity; and a second spectrum (103) from second spectral measurement means (220), having lower resolution but higher resolution. The input of the of the first spectral measurement means (240) is amplified by an optical amplifier (230), being the effects induced by said amplifier (230) on the first spectrum (102) corrected at processing means (270) by comparison with the second spectrum (103).
Abstract:
La presente invención concierne a un dispositivo, y un procedimiento asociado, capaz de obtener la fase de espectros ópticos de una señal óptica o señal problema a analizar utilizando técnicas de heterodinaje entre dos componentes espectrales monocromáticas extraídas simultáneamente de la propia señal problema mediante difusión Brillouin estimulada.
Abstract:
Dispositivo para el análisis espectral de señales ópticas basado en el efecto de Difusión Brillouin Estimulada y procedimiento de medida asociado que utiliza la amplificación óptica de las señales por el propio efecto de Difusión Brillouin. El efecto de Difusión Brillouin permite la amplificación óptica selectiva de una determinada componente del espectro óptico de la señal a analizar, que se denominará señal problema, para su medida con una resolución, sensibilidad y rango dinámicos determinados. La señal problema se introduce en una fibra óptica conjuntamente con una señal óptica de banda estrecha, que denominaremos señal sonda, centrada en una determinada longitud de onda, que se propaga en sentido contrario al de la señal problema interaccionando ambas señales, debido al efecto Brillouin, en el interior de la fibra.
Abstract:
A system and method of optical spectrum analysis that circumvents the trade-off between resolution and sensitivity by combining two spectral measurements: a first spectrum (102) from first spectral measurement means (240), having high resolution and low sensitivity; and a second spectrum (103) from second spectral measurement means (220), having lower resolution but higher resolution. The input of the of the first spectral measurement means (240) is amplified by an optical amplifier (230), being the effects induced by said amplifier (230) on the first spectrum (102) corrected at processing means (270) by comparison with the second spectrum (103).
Abstract:
The invention relates to a device which is used for the spectral analysis of optical signals and which is based on the stimulated Brillouin scattering effect. The invention also relates to the associated measurement method which makes use of the optical signal amplification caused by the Brillouin scattering effect. The Brillouin scattering effect enables the selective optical amplification of a determined component of the optical spectrum of the signal to be analysed, known as the problem signal, for the measurement thereof with a determined dynamic range, sensitivity and resolution. According to the invention, the problem signal is introduced into an optical fibre together with a narrowband optical signal, known as the probe signal, within a determined wavelength. Said probe signal propagates in the opposite direction to that of the problem signal, such that both signals interact inside the fibre owing to the Brillouin effect.
Abstract:
A distributed vibration sensing technique based on Backscattered Rayleigh light (402) is disclosed, enabling the measurement of greater optical fiber (400) lengths by using one or more regeneration modules (200) in which the optical light pulses (401) emitted by a master device (100) are received, conditioned and transmitted again into another optical fiber (400) segment. Pulse conditioning may comprise, for example, reshaping, filtering, amplification and isolation. Each regeneration module (200) further comprise detection means that receive the Backscattered Rayleigh light (402) of the next optical fiber (400) segment. That is, each optical fiber (400) segment is independently detected by a regeneration module (200), which then transmits the sensing information to a central server (600) through a communication network (500).
Abstract:
This invention relates to a device and associated process capable of obtaining the optical spectrum phase of an optical signal or test signal to be analyzed using techniques for heterodyning between two monochromatic spectral components simultaneously extracted from the test signal itself by means of stimulated Brillouin scattering.