Abstract:
An active-pulsed four-dimensional camera system that utilizes a precisely-controlled light source produces spatial information and human-viewed or computer-analyzed images. The acquisition of four-dimensional optical information is performed at a sufficient rate to provide accurate image and spatial information for in-motion applications where the camera is in motion and/or objects being imaged, detected and classified are in motion. Embodiments allow for the reduction or removal of image-blocking conditions like fog, snow, rain, sleet and dust from the processed images. Embodiments provide for operation in daytime or nighttime conditions and can be utilized for day or night full-motion video capture with features like shadow removal. Multi-angle image analysis is taught as a method for classifying and identifying objects and surface features based on their optical reflective characteristics.
Abstract:
LiDAR (light detection and ranging) systems use one or more emitters and a detector array to cover a given field of view where the emitters each emit a single pulse or a multi-pulse packet of light that is sampled by the detector array. On each emitter cycle the detector array will sample the incoming signal intensity at the pre-determined sampling frequency that generates two or more samples per emitted light packet to allow for volumetric analysis of the retroreflected signal portion of each emitted light packet as reflected by one or more objects in the field of view and then received by each detector.
Abstract:
A network-based navigation system includes a user interface and a computer server system that can access a map database, an actual imagery database and an advertisement database in order to provide visual route guidance information having virtual drive-thru advertisements integrated with actual imagery from along a physical route. The user interface permits a user to submit a request for navigation information, receive visual route guidance information in response to the request and initiate a drive- thru presentation of at least a portion of a route. The computer server determines at least one route from the map database based on the request from the user and provides route guidance information to the user interface in response. The computer server also identifies actual imagery from the image database associated with the at least one route and selectively replaces at least one polygon region identified in the actual imagery associated with the at least one route with at least one advertisement from the ad database to create a drive-thru presentation with at least one virtual advertisement. At least a portion of the drive-thru presentation is presented to the user interface. In one embodiment, the computer server records a drive-thru charge for the virtual advertisements present in the portion of the drive-thru presentation provided to the user interface.
Abstract:
An active-pulsed four-dimensional camera system that utilizes a precisely-controlled light source produces spatial information and human-viewed or computer-analyzed images. The acquisition of four-dimensional optical information is performed at a sufficient rate to provide accurate image and spatial information for in-motion applications where the camera is in motion and/or objects being imaged, detected and classified are in motion. Embodiments allow for the reduction or removal of image-blocking conditions like fog, snow, rain, sleet and dust from the processed images. Embodiments provide for operation in daytime or nighttime conditions and can be utilized for day or night full-motion video capture with features like shadow removal. Multi-angle image analysis is taught as a method for classifying and identifying objects and surface features based on their optical reflective characteristics.
Abstract:
An array-based light detection and ranging (LiDAR) unit includes an array of emitter/detector sets configured to cover a field of view for the unit. Each emitter/detector set emits and receives light energy on a specific coincident axis unique for that emitter/detector set. A control system coupled to the array of emitter/detector sets controls initiation of light energy from each emitter and processes time of flight information for light energy received on the coincident axis by the corresponding detector for the emitter/detector set. The time of flight information provides imaging information corresponding to the field of view. Interference among light energy is reduced with respect to detectors in the LiDAR unit not corresponding to the specific coincident axis, and with respect to other LiDAR units and ambient sources of light energy. In one embodiment, multiple array-based LiDAR units are used as part of a control system for an autonomous vehicle.
Abstract:
A system for the automated determination of retroreflectivity values for reflective surfaces disposed along a roadway repeatedly illuminates an area along the roadway that includes at least one reflective surface using a strobing light source. Multiple light intensity values are measured over a field of view which includes at least a portion of the area illuminated by the light source. A computer processing system is used to identifying a portion of the light intensity values associated with a reflective surface and analyze the portion of the light intensity values to determine at least one retroreflectivity value for that reflective surface. Preferably, color images of the area and locational information are also generated by the system and are used together with a characterization profile of the light source to enhance the accuracy of the determination of retroreflectivity values. In one embodiment, a three-dimensional overlay of retroreflectivity values for the roadway is generated and can be manipulated to display retroreflectivity values of a reflective surface at any desired point along the roadway. In another embodiment, a virtual drive through along a roadway is simulated using a plurality of retroreflectivity values to simulate reflections from each reflective surface disposed along the roadway during the virtual drive through.
Abstract:
An array-based light detection and ranging (LiDAR) unit includes an array of emitter/detector sets configured to cover a field of view for the unit. Each emitter/detector set emits and receives light energy on a specific coincident axis unique for that emitter/detector set. A control system coupled to the array of emitter/detector sets controls initiation of light energy from each emitter and processes time of flight information for light energy received on the coincident axis by the corresponding detector for the emitter/detector set. The time of flight information provides imaging information corresponding to the field of view. Interference among light energy is reduced with respect to detectors in the LiDAR unit not corresponding to the specific coincident axis, and with respect to other LiDAR units and ambient sources of light energy. In one embodiment, multiple array-based LiDAR units are used as part of a control system for an autonomous vehicle.
Abstract:
LiDAR (light detection and ranging) systems use one or more emitters and a detector array to cover a given field of view where the emitters each emit a single pulse or a multi-pulse packet of light that is sampled by the detector array. On each emitter cycle the detector array will sample the incoming signal intensity at the pre-determined sampling frequency that generates two or more samples per emitted light packet to allow for volumetric analysis of the retroreflected signal portion of each emitted light packet as reflected by one or more objects in the field of view and then received by each detector.
Abstract:
A network-based navigation system includes a user interface and a computer server system that can access a map database, an actual imagery database and an advertisement database in order to provide visual route guidance information having virtual drive-thru advertisements integrated with actual imagery from along a physical route. The user interface permits a user to submit a request for navigation information, receive visual route guidance information in response to the request and initiate a drive- thru presentation of at least a portion of a route. The computer server determines at least one route from the map database based on the request from the user and provides route guidance information to the user interface in response. The computer server also identifies actual imagery from the image database associated with the at least one route and selectively replaces at least one polygon region identified in the actual imagery associated with the at least one route with at least one advertisement from the ad database to create a drive-thru presentation with at least one virtual advertisement. At least a portion of the drive-thru presentation is presented to the user interface. In one embodiment, the computer server records a drive-thru charge for the virtual advertisements present in the portion of the drive-thru presentation provided to the user interface.
Abstract:
A system for the automated determination of retroreflectivity values for reflective surfaces disposed along a roadway repeatedly illuminates an area along the roadway that includes at least one reflective surface using a strobing light source. Multiple light intensity values are measured over a field of view which includes at least a portion of the area illuminated by the light source. A computer processing system is used to identifying a portion of the light intensity values associated with a reflective surface and analyze the portion of the light intensity values to determine at least one retroreflectivity value for that reflective surface. Preferably, color images of the area and locational information are also generated by the system and are used together with a characterization profile of the light source to enhance the accuracy of the determination of retroreflectivity values. In one embodiment, a three-dimensional overlay of retroreflectivity values for the roadway is generated and can be manipulated to display retroreflectivity values of a reflective surface at any desired point along the roadway. In another embodiment, a virtual drive through along a roadway is simulated using a plurality of retroreflectivity values to simulate reflections from each reflective surface disposed along the roadway during the virtual drive through.