Abstract:
An active-pulsed four-dimensional camera system that utilizes a precisely-controlled light source produces spatial information and human-viewed or computer-analyzed images. The acquisition of four-dimensional optical information is performed at a sufficient rate to provide accurate image and spatial information for in-motion applications where the camera is in motion and/or objects being imaged, detected and classified are in motion. Embodiments allow for the reduction or removal of image-blocking conditions like fog, snow, rain, sleet and dust from the processed images. Embodiments provide for operation in daytime or nighttime conditions and can be utilized for day or night full-motion video capture with features like shadow removal. Multi-angle image analysis is taught as a method for classifying and identifying objects and surface features based on their optical reflective characteristics.
Abstract:
LiDAR (light detection and ranging) systems use one or more emitters and a detector array to cover a given field of view where the emitters each emit a single pulse or a multi-pulse packet of light that is sampled by the detector array. On each emitter cycle the detector array will sample the incoming signal intensity at the pre-determined sampling frequency that generates two or more samples per emitted light packet to allow for volumetric analysis of the retroreflected signal portion of each emitted light packet as reflected by one or more objects in the field of view and then received by each detector.
Abstract:
LiDAR (light detection and ranging) systems use one or more emitters and a detector array to cover a given field of view where the emitters each emit a single pulse or a multi-pulse packet of light that is sampled by the detector array. On each emitter cycle the detector array will sample the incoming signal intensity at the pre-determined sampling frequency that generates two or more samples per emitted light packet to allow for volumetric analysis of the retroreflected signal portion of each emitted light packet as reflected by one or more objects in the field of view and then received by each detector.
Abstract:
Methods, systems, and computer program products for acquiring three-dimensional LiDAR information of a scene are disclosed. According to one aspect, acquiring three-dimensional information includes emitting N pulses in a sequence with each successive pulse having a relative time shift to the sampling reference, thus producing a reconstructed sampled signal with an effective sampling rate of N times the sampling reference. According to another aspect, acquiring three-dimensional information includes emitting two or more frequencies, the differences of each pair of differing frequencies being designated as Δf, and sampling the return information with the use of a sampling reference. Frequency analysis is performed on the sampled information to determine the reference times at which the Δf signals occur and the signal intensity of the Δf signals at each time. Systems as described herein can be utilized for autonomous vehicle navigation, collision avoidance and navigation systems for UAVs, roadway surface texture analysis, non-contact friction analysis, and in-motion deflectometer measurement.
Abstract:
An active-pulsed four-dimensional camera system that utilizes a precisely-controlled light source produces spatial information and human-viewed or computer-analyzed images. The acquisition of four-dimensional optical information is performed at a sufficient rate to provide accurate image and spatial information for in-motion applications where the camera is in motion and/or objects being imaged, detected and classified are in motion. Embodiments allow for the reduction or removal of image-blocking conditions like fog, snow, rain, sleet and dust from the processed images. Embodiments provide for operation in daytime or nighttime conditions and can be utilized for day or night full-motion video capture with features like shadow removal. Multi-angle image analysis is taught as a method for classifying and identifying objects and surface features based on their optical reflective characteristics.
Abstract:
A system for classifying different types of sheeting materials of road signs depicted in a videostream compares estimated retroreflectivity values against known minimum retroreflectivity values for each of a plurality of colors. Once a road sign has been identified in the videostream, the frames associated with that road sign are analyzed to determine each of a plurality of colors present on the road sign. An estimated retroreflectivity for each of the plurality of colors present on the road sign is then determined. By comparing the estimated retroreflectivity for each of the plurality of colors against known minimum retroreflectivity values for the corresponding color for different types of sheeting materials, an accurate determination of the classification of the sheeting material of the road sign is established. Preferably, certain conditions of gross failure of the sheeting material are filtered out before classification of the sheeting material is determined.
Abstract:
A system for the assessment of reflective surfaces disposed along a roadway repeatedly illuminates an area along the roadway that includes at least one reflective surface using a light source. Multiple light intensity values are measured over a field of view which includes at least a portion of the area illuminated by the light source. A computer processing system is used to identifying a portion of the light intensity values associated with a reflective surface and analyze the portion of the light intensity values to determine assessment for that reflective surface.
Abstract:
A system for classifying different types of sheeting materials of road signs depicted in a videostream compares estimated retroreflectivity values against known minimum retroreflectivity values for each of a plurality of colors. Once a road sign has been identified in the videostream, the frames associated with that road sign are analyzed to determine each of a plurality of colors present on the road sign. An estimated retroreflectivity for each of the plurality of colors present on the road sign is then determined. By comparing the estimated retroreflectivity for each of the plurality of colors against known minimum retroreflectivity values for the corresponding color for different types of sheeting materials, an accurate determination of the classification of the sheeting material of the road sign is established. Preferably, certain conditions of gross failure of the sheeting material are filtered out before classification of the sheeting material is determined.
Abstract:
LiDAR (light detection and ranging) systems use one or more emitters and a detector array to cover a given field of view where the emitters each emit a single pulse or a multi-pulse packet of light that is sampled by the detector array. On each emitter cycle the detector array will sample the incoming signal intensity at the pre-determined sampling frequency that generates two or more samples per emitted light packet to allow for volumetric analysis of the retroreflected signal portion of each emitted light packet as reflected by one or more objects in the field of view and then received by each detector.