Abstract:
A patterned transparent conductor includes: (1) a substrate; (2) first additives at least partially embedded into a surface of the substrate within a first area of the surface corresponding to a lower sheet resistance portion; and (3) second additives at least partially embedded into the surface of the substrate within a second area of the surface corresponding to a higher sheet resistance portion. A sheet resistance of the higher sheet resistance portion is at least 100 times a sheet resistance of the lower sheet resistance portion.
Abstract:
Methods and articles of manufacture for storage and shipping of nanowires are disclosed. One disclosed method includes: (a) providing a nanowire suspension including nanowires suspended in a liquid; and (b) disposing the nanowire suspension in a container for storage and shipping, where the container is configured to inhibit agglomeration of nanowires from the nanowire suspension.
Abstract:
Methods and articles of manufacture for storage and shipping of nanowires are disclosed. One disclosed method includes: (a) providing a nanowire suspension including nanowires suspended in a liquid; and (b) disposing the nanowire suspension in a container for storage and shipping, where the container is configured to inhibit agglomeration of nanowires from the nanowire suspension.
Abstract:
A portable, personal apparatus for treating drinking water comprises a generally tubular or cylindrical filter housing containing filtration media and water-permeable screen or mesh or felt or membrane or netting layer at the top and bottom ends of the filter. The design of the apparatus involves the bottle exterior and interior contouring to the filter and enables the efficient and rapid gravity flow of water in through the filter. The apparatus may be configured such that water is first passed through a top reservoir designed to receive water, followed by a porous mesh, followed by granular filtration and antimicrobial media agitated by turbulent motion of influent water, followed by a porous mesh before reaching a durable and reusable water containment vessel.
Abstract:
A portable, personal apparatus for treating drinking water comprises a generally tubular or cylindrical filter housing containing filtration media and water-permeable screen or mesh or felt or membrane or netting layer at the top and bottom ends of the filter. The design of the apparatus involves the bottle exterior and interior contouring to the filter and enables the efficient and rapid gravity flow of water in through the filter. The apparatus may be configured such that water is first passed through a top reservoir designed to receive water, followed by a porous mesh, followed by granular filtration and antimicrobial media agitated by turbulent motion of influent water, followed by a porous mesh before reaching a durable and reusable water containment vessel.
Abstract:
A patterned transparent conductor includes: (1) a substrate; (2) first additives at least partially embedded into a surface of the substrate within a first area of the surface corresponding to a lower sheet resistance portion; and (3) second additives at least partially embedded into the surface of the substrate within a second area of the surface corresponding to a higher sheet resistance portion. A sheet resistance of the higher sheet resistance portion is at least 100 times a sheet resistance of the lower sheet resistance portion.
Abstract:
A patterned transparent conductor includes a substrate and additives at least partially embedded into at least one surface of the substrate and localized adjacent to the surface according to a pattern to form higher sheet conductance portions. The higher sheet conductance portions are laterally adjacent to lower sheet conductance portions.
Abstract:
Electrically conductive or semiconducting additives are embedded into surfaces of host materials for use in a variety of applications and devices. Resulting surface-embedded structures exhibit improved performance, as well as cost benefits arising from their compositions and manufacturing processes.
Abstract:
Methods of producing nanowires and resulting nanowires are described. In one implementation, a method includes heating a reaction mixture including (i) a solvent; (ii) a metal-containing reagent; (iii) a templating agent; and (iv) a seed-promoting agent (SPA) that is a source of halide anions, thereby producing a product that includes nanowires of the metal. The solvent includes at least two hydroxyl groups per molecule. A ratio of a concentration of the halide anions in the reaction mixture to an overall concentration of the metal in the reaction mixture, including ionic and elemental metal forms, is up to 10. The heating is carried out at a seeding temperature, followed by a growth temperature that is higher than the seeding temperature.