Abstract:
A super hydrophobic self-cleaning coating composition composed of from 0.001 to 5% by weight of hydrophobic fumed silicas coated in 95% to 99.999% by weight of a solvent, preferably acetone, to form a super hydrophobic coating for forming an almost clear, translucent dirt repellant film on a painted material, plastic, metal, glass, ceramic, fiberglass, wood, waxed or polymer substrate. The treated fumed silica in a solvent forms a film having a contact angle of at least 165 degrees as compared to water having a contact angle of from 50 to 60 degrees on a noncoated surface. The composition imparts a degree of hydrophobicity to the surface so that the surface has a tilt angle of sliding of less than 2 degrees as compared to water on a noncoated surface having a tilt angle of sliding of 90 degrees or higher.
Abstract:
A novel use of nanomaterials as a viscosity modifier and thermal conductivity improver for gear oil and other lubricating oil compositions. The gear oils of the instant invention have a higher viscosity index, higher shear stability, and improved thermal conductivity compared to currently available conventional gear oils. The preferred nanoparticles also impart a reduction in the coefficient of friction, including reduced friction in the boundary lubrication regime. These properties are obtained by replacing part or all of the polymer thickener or viscosity index improver or some other part of the composition normally used in gear oils with nanomaterials of suitable shape, size, and composition.
Abstract:
The introduction of nanotubes in a liquid provides a means for changing the physical and/or chemical properties of the liquid. Improvements in heat transfer, electrical properties, viscosity, and lubricity can be realized upon dispersion of nanotubes in liquids; however, nanotubes behave like hydrophobic particles and tend to clump together in liquids. Methods of preparing stable dispersions of nanotubes are described and surfactants/dispersants are identified which can disperse carbon nanotubes in aqueous and petroleum liquid medium. The appropriate dispersant is chosen for the carbon nanotube and the water or oil based medium and the dispersant is dissolved into the liquid medium to form a solution. The carbon nanotube is added to the dispersant containing the solution with agitation, ultrasonication, and/or combinations thereof.
Abstract:
A coating composition comprising hydrophobic particles having an average size of between 7 nm and 4,000 nm and a wetting agent for promoting dispersion of the hydrophobic particles in water. The hydrophobic particles may be oxides, such as silica, titania, or zinc oxide. In one embodiment, the hydrophobic particles comprise fumed silica. The coating composition may be brushed, spin coated, or dipped onto a surface. In one embodiment, once the coating composition dries, the coating formed thereby is characterized by a contact angle formed with a water droplet in excess of 165 degrees. A method of making a coating composition comprising providing hydrophobic particles having an average size of between 7 nm and 4,000 nm, mixing a wetting agent with the hydrophobic particles to form a paste, and dispersing the paste in water by mixing to form a mixture.
Abstract:
A water in oil emulsion wax composition composed of natural and synthetic waxes, surfactants, suspending agents, aluminum oxide particles of high purity having an average particle diameter of less than 300 nanometers, typically from 0.20-0.25 microns (200-250 nanometers) containing no magnesium oxide and being agglomerate free together with a aliphatic hydrocarbon solvent producing a wax having cleaning properties and an enhanced high gloss surface from a single application.
Abstract:
The present invention relates to a novel use of nanomaterials as a viscosity modifier and thermal conductivity improver for gear oil and other lubricating oil compositions. The gear oils of the instant invention have a higher viscosity index, higher shear stability, and improved thermal conductivity compared to currently available gear oils. The preferred nanoparticles also impart a reduction in the coefficient of friction, including reduced friction in the boundary lubrication regime. These properties are obtained by replacing part or all of the polymer thickener or viscosity index improver or some other part of the composition normally used in gear oils with nanomaterials of suitable shape, size, and composition.
Abstract:
A novel use of nanomaterials as a viscosity modifier and thermal conductivity improver for gear oil and other lubricating oil compositions. The gear oils of the instant invention have a higher viscosity index, higher shear stability, and improved thermal conductivity compared to currently available conventional gear oils. The preferred nanoparticles also impart a reduction in the coefficient of friction, including reduced friction in the boundary lubrication regime. These properties are obtained by replacing part or all of the polymer thickener or viscosity index improver or some other part of the composition normally used in gear oils with nanomaterials of suitable shape, size, and composition.
Abstract:
A lubricant additive formulation for addition to conventional motor oil to improve the lubricating properties of the engine oil and enhance the performance of the engine. The engine treatment oil additive comprises a synergistic blend of an oil soluble molybdenum additive, polyalphaolefin, ester such as a polyolester or diester, polytetrafluoroethylene, dispersant inhibitor containing zinc dithiophosphate, mineral oil base stock, viscosity index improvers, and borate ester used in combination with a conventional crankcase lubricant at about a 20 to about a 25 % volume/percent. The improved performance of the engine additive in comparison with conventional crankcase lubricants is attributable to the effect of optimizing the design parameters for each of the invdividual chemical constituents and combining the chemical constituents according to the present invention to obtain surprisingly good results including improved: wear, oxidation resistance, viscosity stability, engine cleanliness, fuel economy, cold starting, and inhibition of acid formation.
Abstract:
A super hydrophobic self-cleaning coating composition composed of from 0.001 to 5% by weight of hydrophobic fumed silicas coated in 95% to 99.999% by weight of a solvent, preferably acetone, to form a super hydrophobic coating for forming an almost clear, translucent dirt repellant film on a painted material, plastic, metal, glass, ceramic, fiberglass, wood, waxed or polymer substrate. The treated fumed silica in a solvent forms a film having a contact angle of at least 165 degrees as compared to water having a contact angle of from 50 to 60 degrees on a noncoated surface. The composition imparts a degree of hydrophobicity to the surface so that the surface has a tilt angle of sliding of less than 2 degrees as compared to water on a noncoated surface having a tilt angle of sliding of 90 degrees or higher.
Abstract:
The introduction of nanostructures in a liquid provides a means for changing the physical and/or chemical properties of the liquid. Improvements in heat transfer, electrical properties, viscosity, and lubricity can be realized upon dispersion of nanotubes in liquids. Stable dispersions of nanostructures are described and surfactants/dispersants are identified which can disperse nanostructures in petroleum liquid medium. The appropriate dispersant is chosen for the selected nanostructure material and the oil based medium and the dispersant is dissolved into the liquid medium to form a solution. The nanostructure is added to the dispersant containing the solution with agitation, ultrasonication, and/or combinations thereof Nanostructures dispersed in a fluid form a nanofluid utilized as a shock absorber oil whereby the nanostructures serve to improve the viscosity index of the fluid or more particularly the shock absorber oil in the form of a lubricant additive.