Abstract:
A method for refining and casting metals and metal alloys includes melting and refining a metallic material and then casting the refined molten material by a nucleated casting technique. The casting metals and metal alloys is refined by a melting and refining apparatus (20), and the refined molten material is provided to the atomizing nozzle (62) of a nucleated casting apparatus (60) through a transfer apparatus (40) adapted to maintain the purity of the molten refined material. The melting and refining apparatus (20), the transfer apparatus (40), and the nucleated casting appartus (60) are in serial fluid communication.
Abstract:
A method of processing an alloy ingot or other alloy workpiece to reduce thermal cracking may generally comprise depositing a glass material onto at least a portion of a surface of a workpiece, and heating the glass material to form a surface coating on the workpiece that reduces heat loss from the workpiece. The present disclosure also is directed to an alloy workpieces processed according to methods described herein, and to articles of manufacture including or made from alloy workpieces made according to the methods.
Abstract:
Processes and methods related to producing, processing, and hot working alloy ingots are disclosed. An alloy ingot is formed including an inner ingot core and an outer layer metallurgically bonded to the inner ingot core. The processes and methods are characterized by a reduction in the incidence of surface cracking of the alloy ingot during hot working.
Abstract:
A forging die (412', 414' ) heating or preheating apparatus (420) comprises a burner head (422) comprising a plurality of flame ports (426). The burner head (422) is oriented to compliment an orientation of at least a region of a forging surface of a forging die and is configured to receive and combust a supply of an oxidizing gas and a supply of a fuel and produce flames at the flame ports. The burner portion (432) can be movable with respect to the burner portion (432') to conform at least a portion of the burner head (422) to an orientation of the forging surface (416') of the forging die (410'). The plurality of flame ports (426) are thus configured to impinge the flames onto the forging surface (416', 418') of the forging die to substantially uniformly heat at least the region of the forging surface of the forging die.
Abstract:
A method of processing an alloy ingot or other alloy workpiece to reduce thermal cracking may generally comprise depositing a glass material onto at least a portion of a surface of a workpiece, and heating the glass material to form a surface coating on the workpiece that reduces heat loss from the workpiece. The present disclosure also is directed to an alloy workpieces processed according to methods described herein, and to articles of manufacture including or made from alloy workpieces made according to the methods.
Abstract:
Methods of refining the grain size of titanium and titanium alloys include thermally managed high strain rate multi-axis forging. A high strain rate adiabatically heats an internal region of the workpiece during forging, and a thermal management system is used to heat an external surface region to the workpiece forging temperature, while the internal region is allowed to cool to the workpiece forging temperature. A further method includes multiple upset and draw forging titanium or a titanium alloy using a strain rate less than is used in conventional open die forging of titanium and titanium alloys. Incremental workpiece rotation and draw forging causes severe plastic deformation and grain refinement in the titanium or titanium alloy forging.
Abstract:
The present disclosure relates to electroslag remelting methods and apparatus for producing metallic ingots, as well as to articles of manufacture made from materials processed according to the methods and/or using the apparatus. One such method includes disposing slag within a withdrawal mold (2) comprising a model wall and an electrically conductive member (8) disposed through the mold wall, contacting the slag (4) with a consumable electrode (6), and heating the slag by conducting an electrical current through the consumable electrode into the slag, thereby melting at least a portion of the consumable electrode in contact with the slag. At least a fraction of the melted portion of the consumable electrode is collected in the withdrawal mold to form the ingot. At least a portion of the electrical current is conducted form the slag (4) through the electrically conductive member (8).
Abstract:
The present disclosure relates to electroslag remelting methods and apparatus for producing metallic ingots, as well as to articles of manufacture made from materials processed according to the methods and/or using the apparatus. One such method includes disposing slag within a withdrawal mold comprising a model wall and an electrically conductive member disposed through the mold wall, contacting the slag with a consumable electrode, and heating the slag by conducting an electrical current through the consumable electrode into the slag, thereby melting at least a portion of the consumable electrode in contact with the slag. At least a fraction of the melted portion of the consumable electrode is collected in the withdrawal mold to form the ingot. At least a portion of the electrical current is conducted form the slag through the electrically conductive member.