Abstract:
Described herein are portable fuel cell systems for producing electrical energy. The portable fuel cell systems include a fuel processor including a reformer and a burner. The reformer receives fuel and outputs hydrogen using the fuel. The burner processes fuel to generate heat. The system also includes a fuel cell configured to produce electrical energy using hydrogen output by the reformer. The system also includes a heat exchanger configured to transfer heat generated in the fuel cell or generated in the fuel processor to a reactant fluid.
Abstract:
The invention relates to a portable electrical energy generator, its components, and manufacture of the components and generator. The generator includes a bi-polar plate stack, which is well suited for use in a fuel cell. The stack may include at least one spacer that limits compression of a membrane electrode assembly in the fuel cell. The stack may also include a polymer binder that holds the stack together and/or maintains a compression force on the membrane electrode assembly. An open cathode manifold may also provided to ease oxygen movement. High throughput and low cost manufacture of bi-polar plates is also described herein.
Abstract:
Described herein are portable fuel cell systems for producing electrical energy. The portable fuel cell systems include a fuel processor including a reformer and a burner. The reformer receives fuel and outputs hydrogen using the fuel. The burner processes fuel to generate heat. The system also includes a fuel cell configured to produce electrical energy using hydrogen output by the reformer. The system also includes a heat exchanger configured to transfer heat generated in the fuel cell or generated in the fuel processor to a reactant fluid.
Abstract:
The present invention provides methods for predicting the development of tolerance to a transplant, such as a kidney, using molecular markers that have different expression patterns in tolerant transplant recipients, as compared to non-tolerant or healthy, non-recipient controls.
Abstract:
The present invention provides methods for predicting the development of tolerance to a transplant, such as a kidney, using molecular markers that have different expression patterns in tolerant transplant recipients, as compared to non-tolerant or healthy, non-recipient controls.
Abstract:
In one embodiment, a fuel processor for use in a fuel cell system, may have a bottom plate, having a regenerator having a first inlet to receive an air flow, a burner flow chamber within the regenerator, the burner flow chamber having a second inlet to receive the air flow from the regenerator, and a reformer flow chamber positioned between the regenerator and the burner flow chamber, the reformer flow chamber having a third inlet to receive the air flow from the burner chamber, wherein the burner flow chamber and the reformer flow chamber is formed of a monolithic structure having an elongated, rounded baffle in the center of the monolithic structure. The fuel processor may also have a top plate coupled to the bottom plate to enclose the fuel processor, the top plate having a top surface and a bottom surface.
Abstract:
In one embodiment, a fuel processor for use in a fuel cell system, may have a bottom plate, having a regenerator having a first inlet to receive an air flow, a burner flow chamber within the regenerator, the burner flow chamber having a second inlet to receive the air flow from the regenerator, and a reformer flow chamber positioned between the regenerator and the burner flow chamber, the reformer flow chamber having a third inlet to receive the air flow from the burner chamber, wherein the burner flow chamber and the reformer flow chamber is formed of a monolithic structure having an elongated, rounded baffle in the center of the monolithic structure. The fuel processor may also have a top plate coupled to the bottom plate to enclose the fuel processor, the top plate having a top surface and a bottom surface.
Abstract:
The invention relates generally to the treatment, inhibition or prevention of immune-driven rejection of grafted tissue or cells in a recipient host. Compositions and methods disclosed herein capitalize on the discovery that treatment, inhibition or prevention of costimulation blockade-resistant rejection can be mediated by administering a pharmaceutically effective amount of a CD8+ T cell inhibitory agent in the presence of a CD4+ T cell inhibitory agent to a subject.
Abstract:
In one embodiment, an engine block may comprise an interconnect having: a first manifold section, a second manifold section perpendicular to the first manifold section, the first manifold section and the second manifold section having a plurality of conduits to receive a gas flow, wherein the first manifold section and the second manifold section are formed from a single manifold device; a fuel cell stack housing coupled to the second manifold section to receive a fuel cell stack; and a fuel processor coupled to the first manifold section, wherein the fuel cell processor and the fuel cell stack operate at substantially the same temperature.
Abstract:
In one embodiment, an engine block may comprise an interconnect having: a first manifold section, a second manifold section perpendicular to the first manifold section, the first manifold section and the second manifold section having a plurality of conduits to receive a gas flow, wherein the first manifold section and the second manifold section are formed from a single manifold device; a fuel cell stack housing coupled to the second manifold section to receive a fuel cell stack; and a fuel processor coupled to the first manifold section, wherein the fuel cell processor and the fuel cell stack operate at substantially the same temperature.