METHOD FOR PREPARING A POWDER OF AN ALLOY BASED ON URANIUM AND MOLYBDENUM
    5.
    发明申请
    METHOD FOR PREPARING A POWDER OF AN ALLOY BASED ON URANIUM AND MOLYBDENUM 审中-公开
    制备基于铀和钼的合金粉末的方法

    公开(公告)号:WO2012089687A3

    公开(公告)日:2013-02-21

    申请号:PCT/EP2011074009

    申请日:2011-12-23

    Abstract: The invention relates to a method for preparing a powder of a metastable ? phase uranium- and molybdenum-based alloy. The invention comprises the following steps consisting in: a) bringing into contact at least a first reagent selected from uranium oxides and mixtures thereof, uranium fluorides and mixtures thereof, with a second reagent consisting of molybdenum and a third reagent consisting of a reducing metal, said first, second and third reagents being in divided form; b) reacting the reagents at a temperature above the melting temperature of the third reagent and in an inert atmosphere, leading to the formation of the alloy comprising uranium and molybdenum in the form of a powder having particles coated with a layer of oxide or fluoride of the reducing metal; c) cooling the resulting powder at a rate of 450°C/hour; and d) removing the layer of oxide or fluoride of the reducing metal that coats the particles of the powder of the alloy comprising uranium and molybdenum. The invention also relates to a method for producing a nuclear fuel, using the above-mentioned method. The invention is suitable for the production of nuclear fuel, such as MTR.

    Abstract translation: 本发明涉及一种制备亚稳态粉末的方法, 相铀和钼基合金。 本发明包括以下步骤:a)使选自铀氧化物及其混合物,铀氟化物及其混合物的至少第一试剂与由钼组成的第二试剂和由还原金属组成的第三试剂接触, 所述第一,第二和第三试剂是分开的形式; b)在高于第三试剂的熔融温度的温度下和在惰性气氛中使试剂反应,导致形成粉末形式的包含铀和钼的合金,所述合金的粉末具有涂覆有氧化物或氟化物层 还原金属; c)以450℃/小时的速率冷却所得粉末; 以及d)除去包含铀和钼合金粉末颗粒的还原金属的氧化物或氟化物层。 本发明还涉及使用上述方法制造核燃料的方法。 本发明适用于生产核燃料,如地铁。

    OPTICAL SWITCHING DEVICE
    7.
    发明申请
    OPTICAL SWITCHING DEVICE 审中-公开
    光开关器件

    公开(公告)号:WO2007049965A1

    公开(公告)日:2007-05-03

    申请号:PCT/NL2006/050268

    申请日:2006-10-27

    Abstract: A hydrogen permeable optical reflective layer (4) of a transition metal is deposited on transition metal (hydride) layer (3) which can switch from a black absorbing state. A hydrogen permeable catalytic layer (5) of a transition metal is deposited on top of the reflective layer (4). Ti and/or Pd may be used as transition metal(s) in all of the three layers (3,4,5). Co-sputtering may be used to deposit a transition metal (hydride) switching layer (3) with a maximum thickness of 100 nm on a substrate (2) which can be of any material. The thickness of the optical reflective layer (4), which is larger than the thickness of the switching layer (3), is more than 10 nm (but preferably 50-200 nm) so that there is (no or) little transmission. The thickness of the catalytic layer (5) is about 10 nm. If a detector (11) is included one can produce a hydrogen sensor. Alternatively, one can produce a temperature controlled solar energy converter (17) by including a fluid heater (18).

    Abstract translation: 过渡金属的透氢光反射层(4)沉积在能从黑色吸收状态转变的过渡金属(氢化物)层(3)上。 过渡金属的氢可渗透催化剂层(5)沉积在反射层(4)的顶部。 Ti和/或Pd可用作所有三层(3,4,5)中的过渡金属。 可以在可以是任何材料的基板(2)上沉积最大厚度为100nm的过渡金属(氢化物)开关层(3)的共溅射。 光反射层(4)的厚度大于开关层(3)的厚度大于10nm(但优选为50-200nm),因此(无或少)透射。 催化剂层(5)的厚度约为10nm。 如果包括检测器(11),则可以产生氢传感器。 或者,可以通过包括流体加热器(18)来生产温度控制的太阳能转换器(17)。

Patent Agency Ranking