Abstract:
A laminable shaped glass article includes a flat-surface/curved-surface glass article. A flat-surface/flat-surface glass body is reformed into a curved-surface/curved-surface glass body. One of the curved surfaces of the curved-surface/curved-surface is planarized to form the flat-surface/curved-surface glass article.
Abstract:
The invention relates to glass articles suitable for use as electronic device housing/ enclosure or protective cover which comprise a glass material. Particularly, a housing/enclosure/cover comprising an ion-exchanged glass exhibiting the following attributes (1) radio, and microwave frequency transparency, as defined by a loss tangent of less than 0.03 and at a frequency range of between 15 MHz to 3.0 GHz; (2) infrared transparency; (3) a fracture toughness of greater than 0.6 MPa?m ½ ; (4) a 4-point bend strength of greater than 350 MPa; (5) a Vickers hardness of at least 450 kgf/mm 2 and a Vickers median/radial crack initiation threshold of at least 5 kgf; (6) a Young's Modulus ranging between about 50 to 100 GPa;; (7) a thermal conductivity of less than 2.0 W/m°C, and (9) and at least one of the following attributes: (i) a compressive surface layer having a depth of layer (DOL) greater and a compressive stress greater than 400 MPa, or, (ii) a central tension of more than 20 MPa.
Abstract:
The invention is directed to a high strength, chemically toughened protective glass article, the glass article having a high damage tolerance threshold of at least 2000g as measured by the lack of initiation of radial cracks when the load is applied to the glass using a Vickers indenter.
Abstract:
Disclosed are photo or electron beam curable polymerizable compositions, and preparation thereof and devices containing such cured material. The composition contains completely or substantially completely hydrogenated hydrocarbon-based material completely free or substantially free of carbon-carbon double and triple bonds containing photo or electron beam curable terminal or pendant groups, low-outgassing photoinitiators, an optional viscosity adjustment component and an optional filler. The composition is visible light, UV or electron beam curable. It cures into a low-modulus, low outgassing polymer material. The composition can be used as an adhesive, sealant or lens potting material. It is ideal for use in lithographic tools and other optical devices involving deep or vacuum ultraviolet radiations, in particular, as lens potting materials for 248 nm, 193 nm and 157 nm lithographic tools, as well as other optical devices involving using high fluence irradiation.
Abstract:
According to one embodiment, a method for producing a coated glass article may include applying an anti-reflective coating onto a glass substrate. The glass substrate may include a first major surface, and a second major surface opposite the first major surface. The anti-reflective coating may be applied to the first major surface of the glass substrate. A substrate thickness may be measured between the first major surface and the second major surface. The glass substrate may have an aspect ratio of at least about 100: 1. The coated glass article may have a reflectance of less than 2% for all wavelengths from 450 nanometers to 700 nanometers. The anti-reflective coating may include one or more layers. The cumulative layer stress of the anti-reflective coating may have an absolute value less than or equal to about 167,000 MPa nm.
Abstract:
The invention is directed to a method of protecting a glass surface during transportation and/or process using an aqueous solution of an acrylic material to protectively coat the surface of the glass sheet. The acrylic protective coating is applied by dipping, roller applying or spraying the coating on the glass using an aqueous solution fo pH >= 9. The coating is then cured, dried or baked in an oven. Subsequently, the glass sheet is scored and separated into individual glass article blanks for further processing; for example, edge grinding to produce smooth edges and drilling/milling to produce openings such as holes in the surface of the glass. When processing of the glass article is completed, the protective coating can be removed or the article can be shipped to the end used who can remove the coating using an aqueous solution of pH > 12 to remove the coating.
Abstract:
Disclosed are optical resonators having low OH content in at least the near-surface region and a process for making low OH glass article by chlorine treatment of consolidated glass of the article. Cl2 gas was used to remove OH from depth as deep as 350 m from the surface of the consolidated glass. The process can be used for treating flame-polished preformed optical resonator disks. A new process involving hot pressing or thermal reflowing for making planar optical resonator disks without the use of flame polishing is also disclosed.
Abstract:
A method of making a 3D glass article includes forming at least one marker on an edge of a 2D glass piece. The 2D glass piece is thermally reformed into a 3D glass article, where the at least one marker formed on the edge of the 2D glass piece is carried over to an edge of the 3D glass article. The 3D glass article is aligned on a support using the at least one marker on the edge of the 3D glass article. Then, the edge of the 3D glass article is finished to a final shape and dimension.
Abstract:
A print press system and a method are described herein that print an electronic circuit onto a material (e.g., glass substrate, plastic film, plastic film-glass substrate laminate). In exemplary applications, the print press system can print an electronic circuit onto a material to form, for instance, a flexible Liquid Crystal Display, a retail point of purchase sign and an e-book.
Abstract:
The present invention" is directed to a process for coating at least one geometrically defined surface of an optical article's substrate, without generating optical defects, said surface forming a Fresnel lens (2) comprising: providing a removable plastic carrier (4) having a specific thickness and a specific base curvature, depositing a curable coating composition (3) onto either the at least one surface forming a Fresnel lens or the internal surface of the carrier, moving the carrier and the optical article relatively to each other to bring the deposited curable coating composition into contact with either the al least one surface forming a Fresnel lens or the internal surface of the carrier, applying a specific pressure onto the external surface of the carrier to spread out the curable coating composition so as to cover said at least one surface forming a Fresnel lens, curing the layer of curable coating composition and withdrawing the removalbe carrier