Abstract:
A Schottky barrier diode comprises a first-type substrate (100), a second-type well isolation region (102) on the first-type substrate, and a first-type well region (110) on the second-type well isolation region. With embodiments herein a feature referred to as a perimeter capacitance well junction ring (106) is on the second-type well isolation region. A second-type well region (104) is on the second-type well isolation region. The perimeter capacitance well junction ring is positioned between and separates the first-type well region and the second-type well region. A second-type contact region (108) is on the second-type well region, and a first-type contact region (112) contacts the inner portion of the first-type well region. The inner portion of the first-type well region is positioned within the center of the first-type contact region. Additionally, a first ohmic metallic layer (124) is on the first- type contact region and a second ohmic metallic layer (126) is on the first-type well region. The first ohmic metallic layer contacts the second ohmic metallic layer at a junction that makes up the Schottky barrier of the Schottky barrier diode.
Abstract:
Disclosed are embodiments of a Schottky barrier diode (100). This Schottky barrier diode can be formed in a semiconductor substrate (101) having a doped region (110) with a first conductivity type. A trench isolation structure (120) can laterally surround a section (111) of the doped region at the top surface (102) of the substrate. A semiconductor layer (150) can be positioned on the top surface of the substrate. This semiconductor layer can have a Schottky barrier portion (151) over the defined section (111) of the doped region and a guardring portion (152) over the trench isolation structure laterally surrounding the Schottky barrier portion. The Schottky barrier portion can have the first conductivity type and the guarding portion can have a second conductivity type different from the first conductivity type. A metal silicide layer (140) can overlie the semiconductor layer. Also disclosed are embodiments of a method of forming this Schottky barrier diode and of a design structure for the Schottky barrier diode.
Abstract:
A Schottky barrier diode comprises a first-type substrate (100), a second-type well isolation region (102) on the first-type substrate, and a first-type well region (110) on the second-type well isolation region. With embodiments herein a feature referred to as a perimeter capacitance well junction ring (106) is on the second-type well isolation region. A second-type well region (104) is on the second-type well isolation region. The perimeter capacitance well junction ring is positioned between and separates the first-type well region and the second-type well region. A second-type contact region (108) is on the second-type well region, and a first-type contact region (112) contacts the inner portion of the first-type well region. The inner portion of the first-type well region is positioned within the center of the first-type contact region. Additionally, a first ohmic metallic layer (124) is on the first- type contact region and a second ohmic metallic layer (126) is on the first-type well region. The first ohmic metallic layer contacts the second ohmic metallic layer at a junction that makes up the Schottky barrier of the Schottky barrier diode.
Abstract:
Disclosed are embodiments of a Schottky barrier diode (100). This Schottky barrier diode can be formed in a semiconductor substrate (101) having a doped region (110) with a first conductivity type. A trench isolation structure (120) can laterally surround a section (111) of the doped region at the top surface (102) of the substrate. A semiconductor layer (150) can be positioned on the top surface of the substrate. This semiconductor layer can have a Schottky barrier portion (151) over the defined section (111) of the doped region and a guardring portion (152) over the trench isolation structure laterally surrounding the Schottky barrier portion. The Schottky barrier portion can have the first conductivity type and the guarding portion can have a second conductivity type different from the first conductivity type. A metal silicide layer (140) can overlie the semiconductor layer. Also disclosed are embodiments of a method of forming this Schottky barrier diode and of a design structure for the Schottky barrier diode.