Abstract:
PROBLEM TO BE SOLVED: To provide a method of forming an all solid plane thin-film lithium ion secondary battery at a low cost. SOLUTION: The forming method comprises: a step to form a groove on a substrate 10 consisting of silicon or silicon oxide; a step to deposit a stack having a positive electrode collector layer 16, a positive electrode layer 18, a solid electrolyte layer 20, and a negative electrode layer 22; a step to form a negative electrode collector layer 26 filling the space remaining in the groove as the deposit has a thickness smaller than the depth of the groove; and a step to flatten the exposed surface of the negative electrode collector layer 26. A positive electrode side lead 42 and the negative electrode side lead 40 are arranged on an identical surface side. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method of forming a thin film lithium ion secondary battery by a low-cost method. SOLUTION: The method of forming a lithium ion secondary battery includes at least a step of forming an insulating layer 12 having a locally through aperture part on a conductive substrate 10 of doped silicon and metal etc., a step of depositing a stack having an anode collector layer 18, an anode active material layer 20, an electrolyte layer 22, and a cathode active material layer 24, a step of forming a cathode collector layer 28 to fill a space remaining in the aperture since this stack has a thickness smaller than the thickness of the insulating layer 12, and a step of flattening the upper exposed surface of the insulating layer 12. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method of manufacturing a thin film lithium ion battery which is improved in quality of a cathode layer made of LiTiOS. SOLUTION: An accumulated type lithium ion battery is manufactured by: a step wherein a laminate of the cathode layer (42) formed of a material capable of accepting lithium ions, an electrolyte layer (44) and an anode layer (48) are formed at a substrate (30); a step wherein a short circuit part between the anode layer (48) and the cathode layer (42) is formed; a step wherein lithium is thermally vapor-deposited; and a step wherein the short circuit part between the anode layer (48) and the cathode layer (42) is opened. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method for sealing electronic components without the need for use of a handle wafer by avoiding a warpage phenomenon. SOLUTION: The method for sealing electronic components includes the steps of: forming, in a first surface of a semiconductor wafer (10), electronic components; forming, on the first surface, an conductive interconnection stack (18) covered with an insulating material; forming first and second bonding pads (24A, 24B) on the interconnection stack (18); thinning down the wafer (10), except at least on the contour of the semiconductor wafer (10); filling the thinned-down region of the semiconductor wafer (10) with a first resin layer (38); arranging a first electronic chip (42) on the first bonding pads (24B) and forming a first solder bumps (44) on the second bonding pads (24A); depositing a second resin layer (46) covering the first electronic chips (42) and partially covering the solder bumps (44); bonding an adhesive strip (48) on the first resin layer (38); and scribing the structure into individual chips. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To decrease the bulk of a coupling structure and to improve reliability of measurements in a multiband coupling circuit.SOLUTION: A distributed multiband coupling circuit includes: a number (n) of first and of second terminals equal to the number of frequency bands; a third terminal and a fourth terminal; a number (n) of distributed couplers equal to the number of frequency bands, all couplers being identical and sized according to the highest frequency band. Each coupler includes a first conductive line between first and second ports intended to convey a signal to be transmitted in the concerned frequency band, and a second conductive line coupled to the first one between third and fourth ports. The coupling circuit further includes a first set of resistive splitters in cascade between the third ports of the couplers, wherein a terminal of the resistive splitter associated with the first coupler being connected to the third terminal.
Abstract:
PROBLEM TO BE SOLVED: To provide a fuel cell in which humidity is adjusted without interrupting an ordinary operation of the fuel cell. SOLUTION: The hydrogen-oxygen fuel cell is provided with a main cell FC1 and an auxiliary cell FC2 which have a common electrolyte layer and of which at least one electrode is different from each other, a measuring means 34 for measuring humidity of the electrolyte layer, and a controlling means 35 for controlling an operation of the main cell FC1 and the auxiliary cell FC2 with regard to a same load L and an operation of each of the main cell FC1 and the auxiliary cell FC2 with regard to two different loads L, 33. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
L'invention concerne un circuit de commande en variation de puissance d'une charge alimentée par une tension alternative (V^Q), comprenant : un premier thyristor (Tl) et une première diode (Dl) en antiparallèle entre des premier (A) et deuxième (R) noeuds, la cathode de la première diode (Dl) étant côté premier noeud (A); un second thyristor (T2) et une deuxième diode (D2) en antiparallèle entre le deuxième noeud (R) et un troisième noeud (B), la cathode de la deuxième diode (D2) étant côté troisième noeud (B); des troisième (D3) et quatrième (D4) diodes en antisérie entre les premier (A) et troisième (B) noeuds, les cathodes des troisième (D3) et quatrième (D4) diodes étant reliées à un quatrième noeud (J); un transistor (Ml) entre les deuxième (R) et quatrième (J) noeuds; et une unité de commande (MCU) des premier (Tl) et second (T2) thyristors et du transistor (Ml).
Abstract:
Ce procédé de préparation d'un film amorphe de sulfure ou d'oxysulfure métallique lithié de formule LiαM(O1-βSβ)y met en œuvre un matériau de cible lithié; M étant avantageusement choisi dans le groupe comprenant Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ag, Cd, In, Sn, Sb, Ta, W, Pb, Bi, et leurs mélanges; et • α ≥ 0,5;• 1 ≥ β ≥ 2/3;• 2 ≥ α/γ > 1/3
Abstract:
L'invention concerne un convertisseur à découpage comprenant un transformateur inductif (10) dont un enroulement secondaire (12) est associé à au moins un premier interrupteur (34), comportant en parallèle sur le premier interrupteur, au moins une première diode en série avec un élément capacitif; et en parallèle sur ledit élément capacitif, un circuit actif de limitation de la tension à ses bornes.