Abstract:
Semiconductor component (1) with charge compensation structure (3) and method for producing the same. For that purpose, the semiconductor component (1) has a semiconductor body (4) with a drift section (5) between two electrodes (6, 7). The drift section (5) comprises drift zones of a first conductivity type forming a current path between the electrodes (6, 7) in the drift section, while charge compensation zones (11) of a complementary conductivity type narrow the current path in the drift section (5). The drift section (5) comprises for that purpose two alternating, epitaxially grown diffusion zone types (9, 10), the first drift zone type (9) having a monocrystalline semiconductor material on a monocrystalline substrate (12), and a second drift zone type (10) having a monocrystalline semiconductor material in a trench structure (13), with walls (14, 15) which have a complementary doping and form the charge compensation zones (11).
Abstract:
The invention relates to power semiconductor components with stop zones (7). To optimize the static and dynamic losses of the power semiconductor components the stop zone comprises donors which present at least one donor level which is situated within the forbidden band of silicon and is at a distance of at least 200 meV from the edge of the silicon conduction band.
Abstract:
The invention relates to a method for producing a body area for a vertical MOS transistor array in a semiconductor body, wherein the body area has at least one channel region disposed between the source area and the drain area and borders on a gate electrode. A first implantation of doping material is effected in the semiconductor body, wherein the maximum of doping material of the first implantation is placed in the back part of the channel region (11) within the semiconductor body. At least a second implantation of doping material is then effected with a smaller dose than in the first implantation, wherein the maximum of doping material of the second implantation lies within the semiconductor body below the maximum of doping material of the first implantation. Subsequently, the doping material is diffused off.
Abstract:
Die Erfindung betrifft ein Halbleiterbauelement (1) mit Ladungskompensationsstruktur (3) und ein Verfahren zur Herstellung desselben. Dazu weist das Halbleiterbauelement (1) einen Halbleiterkörper (4) auf, der eine Driftstrecke (5) zwischen zwei Elektroden (6, 7) besitzt. Die Driftstrecke (5) weist Driftzonen eines ersten Leitungstyps auf, die einen Strompfad zwischen den Elektroden (6, 7) in der Driftstrecke bereitstellen, während Ladungskompensationszonen (11) eines komplementären Leitungstyps den Strompfad der Driftstrecke (5) einengen. Dazu weist die Driftstrecke (5) zwei alternierend angeordnete, epitaxial aufgewachsene Diffusionszonentypen (9, 10) auf, wobei der erste Driftzonentyp (9) auf einem monokristallinen Substrat (12) monokristallines Halbleitermaterial aufweist und ein zweiter Driftzonentyp (10) monokristallines Halbleitermaterial in einer Grabenstruktur (13) besitzt, mit komplementär dotierten Wänden (14, 15), wobei die komplementär dotierten Wände (14, 15) die Ladungskompensationszonen (11) bilden.
Abstract:
A compensating component and a method for the production thereof are described. Compensating regions are produced by implanting sulfur or selenium in a p-conductive semiconductor layer or, are provided as p-conductive regions, which are doped with indium, thallium and/or palladium, in a cluster-like manner inside an n-conductive region.
Abstract:
Beschrieben wird ein Verfahren zur Behandlung eines Sauerstoff enthaltenden Halbleiterwafers, der eine erste Seite, eine der ersten Seite gegenüberliegende zweite Seite, einen sich an die erste Seite anschließenden ersten Halbleiterbe-reich, und einen sich an die zweite Seite anschließenden zweiten Halbleiterbereich aufweist, mit folgenden Verfahrens-schritten:-Bestrahlen der zweiten Seite des Wafers mit hochenergeti schen Teilchen, wodurch Kristalldefekte in dem zweiten Halbleiterbereich entstehen,- Durchführen eines ersten Temperaturprozesses, bei dem der Wafer auf Temperaturen zwischen 700° C und 1100° C aufgeheizt wird. Die Erfindung betrifft außerdem ein auf Basis eines derart behandelten Wafers hergestelltes Bauelement.
Abstract:
The invention relates to a method for producing a semiconductor component comprising semiconductor areas (4, 5) of different conductivity types which are alternately positioned in a semiconductor body and in said semiconductor body (1) extend at least from one first zone (6) to near a second zone (1) and by way of variable dopage from trenches (11, 14) and their fillings generate an electric field which increases from both said zones (6, 1).
Abstract:
The invention relates to a high voltage resistant edge structure in the edge area of a semiconductor element, comprising floating guard rings of a first conductivity type and intermediate ring areas of a second conductivity type arranged between said floating guard rings. The conductivity and/or geometry of the floating guard rings and/or intermediate ring areas is adjusted in such a way that the charge carriers are fully cleared when a blocking voltage is applied. The inventive edge structure enables the electrical field to be modulated on both the surface and in the volume of the semiconductor body. By dimensioning the inventive edge structure in an appropriate manner, maximum field intensity can be applied depthwise in a simple manner i.e. in the vertical pn transition area. An appropriate edge structure enabling a "soft" volume electrical-field run out to be continuously obtained by means of an extensive p and n doped concentration area.
Abstract:
The invention concerns a semiconductor component controllable through field effect with a vertical or lateral construction, i.e. MOSFETs and IGBTs. In the source-drain loading stage, recessed zones and complementary zones of opposing conducting types are made in the semiconductor body, i.e. in the inner zone for vertical components and in the drift zone for lateral components, the concentration in the regions doped by the first conducting type corresponding approximately to the concentration in the regions doped by the second conducting type.