Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
Abstract:
A method of fabricating a high-density array of holes in glass is provided, comprising providing a glass piece having a front surface, then irradiating the front surface of the glass piece with a UV laser beam focused to a focal point within +/- 100 μm of the front surface of the glass piece most desirably within +/- 50 μm of the front surface. The lens focusing the laser has a numerical aperture desirably in the range of from 0.1 to 0.4, more desirably in the range of from 0.1 to 0.15 for glass thickness between 0.3 mm and 0.63 mm, even more desirably in the range of from 0.12 to 0.13, so as to produce open holes extending into the glass piece 100 from the front surface 102 of the glass piece, the holes having an diameter the in range of from 5 to 15 μm, and an aspect ratio of at least 20:1. For thinner glass, in the range of from 0.1 - 0.3 mm, the numerical aperture is desirably from 0.25 to 0.4, more desirably from 0.25 to 0.3, and the beam is preferably focused to within +/- 30 μm of the front surface of the glass. The laser is desirable operated at a repetition rate of about 15 kHz or below. An array of holes thus produced may then be enlarged by etching. The front surface may be polished prior to etching, if desired.
Abstract:
Vacuum-insulated glass (VIG) windows (10) that employ glass-bump spacers (50) and two or more glass panes (20) are disclosed. The glass-bump spacers are formed in the surface (24) of one of the glass panes (20) and consist of the glass material from the body portion (23) of the glass pane. Thus, the glass-bump spacers are integrally formed in the glass pane, as opposed to being discrete spacer elements that need to be added and fixed to the glass pane. Methods of forming VIG windows are also disclosed. The methods include forming the glass-bump spacers by irradiating a glass pane with a focused beam (112F) from a laser (110). Heating effects in the glass cause the glass to locally expand, thereby forming a glass-bump spacer. The process is repeated at different locations in the glass pane to form an array of glass-bump spacers. A second glass pane is brought into contact with the glass-bump spacers, and the edges (28F, 28B) sealed. The resulting sealed interior region (40) is then evacuated to a vacuum pressure of less than one atmosphere.
Abstract:
A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package particularly using an OLED is described herein. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition or rare earth metal. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate such that a portion of it swells and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device. The second substrate plate is doped with at least one transition metal such that when the laser interacts with it there is an absorption of light from the laser in the second substrate plate.
Abstract:
A method for fabricating a high-density array of holes in glass comprises providing a glass sheet having a front surface and irradiating the glass sheet with a laser beam so as to produce open holes extending into the glass sheet from the front surface of the glass sheet. The beam creates thermally induced residual stress within the glass around the holes, and after irradiating, the glass sheet is annealed to eliminate or reduce thermal stress caused by the step of irradiating. The glass sheet is then etched to produce the final hole size. Preferably, the glass sheet is also annealed before the step of irradiating, at sufficiently high temperature for a sufficient time to render the glass sheet dimensionally stable during the step of annealing after irradiating.
Abstract:
A method for manufacturing an optical assembly (10) comprises providing a first substrate (12, 14) having a first surface, providing a second substrate (12, 14) having a second surface facing the first surface, and forming a pattern microbump (22) on at least a select one of the first surface and the second surface. The method further comprises applying an adhesive (16) to the at least select one of the first surface and the second surface in a region proximate the pattern microbump, and attaching the first substrate to the second substrate by placing the first surface and the second surface in close proximity to one another such that the adhesive contacts both the first surface and the second surface, and wherein the adhesive is held within a preselected area by the pattern microbump.
Abstract:
Disclosed are systems and methods for cutting one or more glass sheets. A system is provided comprising a first mirror having a first reflective surface and a second reflective surface that is spaced from and opposes the first reflective surface to define a cavity between the mirrors. An aperture can be defined in the first mirror. Furthermore, a laser beam can be provided that is configured to emit a beam through the aperture into the cavity. Beams reflected in the cavity, in one aspect, define a common focus point through which the glass sheet can be translated to cause the cutting of the glass sheets. A means for translating the glass sheet through the cavity is provided, in one aspect.
Abstract:
A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, and/or neodymium. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate in a manner that causes a portion of it to swell and form a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device. The second substrate plate is doped with at least one transition metal such that when the laser interacts with it there is an absorption of light from the laser in the second substrate plate, which leads to the formation of the hermetic seal while avoiding thermal damage to the thin-film device. Another embodiment of the hermetically sealed glass package and a method for manufacturing that hermetically sealed glass package are also described herein.
Abstract:
Methods of making a glass-based article including a surface feature thereon. Methods include arranging a glass-based substrate relative to a laser. Methods also include irradiating the glass-based substrate with laser beam with a light wavelength from about 2500 nm to about 3000 nm to grow a surface feature thereon.
Abstract:
This disclosure describes a process for strengthening, by ion-exchange, the edges of an article separated from a large glass sheet after sheet has been ion exchanged to strengthen by exposing the one or a plurality of the edges of the separated article, only, to an ion exchange medium (for example without limitation, a salt, paste, frit, glass) while the glass surface is maintained at temperatures less than 200 °C.