Abstract:
A method for torrefaction of lignocellulosic biomass using a torrefaction reactor vessel (10, 70, 100) having stacked trays (42, 74, 102, 104), the method including; continuously feeding the biomass to an upper inlet (14) of the torrefaction reactor vessel such that the biomass material is deposited on an upper tray of a plurality of trays stacked vertically within the reactor; as the biomass moves across an upper surface of each of the trays, heating and drying the biomass material with a gas (18) injected into the vessel, wherein the gas is substantially non-oxidizing of the biomass, is under a pressure of at least 20 bar gauge and at a temperature of at least 200°C; cascading the biomass down through the trays (42, 74, 102, 104) by passing the biomass through an opening (46) in each of the trays to deposit the biomass on a lower tray; discharging torrefied biomass from a lower outlet (16, 81, 116) of the torrefaction reactor vessel, and circulating gas (30, 31, 24, 64, 76, 77, 78, 79) extracted from a lower elevation of the reactor vessel to an upper region (15) of the reactor vessel.
Abstract:
A method for chemically digesting cellulosic fibrous material including: adding a liquor to cellulosic fibrous material to form a slurry in a chip feed system; transporting the slurry from the chip feed system to a batch digester vessel; determining when a chip level rises above an extraction screen in the batch digester vessel; after the chip level rises above the extraction screen, extracting liquor from the batch digester vessel while the transport continues of the slurry into the batch digester vessel; adding cooking liquor to slurry in the batch digester vessel; ceasing the transport of the slurry into the batch digester vessel and thereafter converting the cellulosic material in the vessel to a pulp, and discharging the pulp from the batch digester vessel before restarting the transporting of the slurry into the digester vessel.
Abstract:
A feed system includes a buffer assembly that receives material to be fed to a gasifier. The buffer assembly has structure that pre-processes the material for delivery to the gasifier. A rotary valve is positioned relative to the buffer assembly to receive the material from the buffer assembly. A digester receives the material from the first rotary valve, where the rotary valve conveys the material to the digester and includes a gas lock that prevents gas from escaping the digester. The digester is operable as one of a dryer and a gasifier depending on its operating parameters.
Abstract:
A method for torrefaction of biomass using a torrefaction reactor vessel having stacked trays including: feeding the biomass to an upper inlet of the vessel such that the biomass material is deposited on an upper tray of a vertical stack of trays in the reactor; cascading the biomass down through the trays by passing the biomass through an opening in each of the trays to deposit the biomass on a lower tray; as the biomass moves around each of the stacked trays, heating the biomass material with an oxygen deprived gas; extracting moisture containing gas having passed through the biomass on the upper trays wherein the extraction is immediately below each of the upper trays; as the biomass undergoes torrefaction in the lower trays of the stacked trays, retaining the gas with the biomass until the biomass falls from the stacked trays to a pile of biomass in the reactor vessel; exhausting gases containing organic compounds volatized by the torrefaction of the biomass through a gas outlet on the vessel at an elevation between the stacked trays and the pile of biomass, and discharging torrefied biomass from a lower outlet of the torrefaction reactor vessel.
Abstract:
A pressurized torrefaction reactor vessel including: a rotatable shaft extending vertically down from a top of the vessel; scraper devices each at a different elevation within the vessel and mounted to the shaft; a tray associated with each one of the scraper devices such that the scraper device is immediately above a tray of the tray assembly; wherein the tray is an open mesh and impermeable to passage of biomass through the tray; each tray includes a discharge opening to transfer biomass from the tray and down to a tray of a lower one of the tray assemblies, and wherein the discharge opening in the lowermost tray assembly transfers the biomass to a pile of the biomass in the vessel, and a bottom discharge port of the vessel through which the torrefied biomass is discharged.
Abstract:
A method for torrefaction of Iignocellulosic biomass using a torrefaction reactor vessel having stacked tray assemblies comprising: continuously feeding the biomass to an upper inlet to the torrefaction reactor vessel such that the biomass material is deposited on an upper tray assembly of a plurality of tray assemblies stacked vertically within the reactor; as the biomass moves in the vessel while supported by a tray of each tray assembly, heating and drying the biomass material with a gas injected into the vessel, wherein the gas is substantially non-oxidizing of the biomass and is under a pressure of at least 3 bar gauge and at a temperature of at least 200°C; cascading the biomass down through the trays by passing the biomass through an opening in each of the trays to deposit the biomass on the tray of the next lower tray assembly; discharging torrefied biomass from a lower outlet of the torrefaction reactor, and circulating gas extracted from the reactor vessel back to the reactor.
Abstract:
A reactor apparatus including: an internal mixing chamber including a first chamber section having a cross-sectional area expanding from a biomass inlet to the internal mixing chamber to the a second chamber section; the second chamber section having a substantially uniform internal cross-sectional area from the opposite end of the first chamber section to a discharge end of the mixing chamber; the biomass inlet is coupled to a source of pre-treated biomass external to the reactor vessel, and a rotating mixing device in the internal mixing chamber and coaxial with an axis of the first chamber section.
Abstract:
A feed system includes a buffer assembly that receives material to be fed to a gasifier. The buffer assembly has structure that pre-processes the material for delivery to the gasifier. A rotary valve is positioned relative to the buffer assembly to receive the material from the buffer assembly. A digester receives the material from the first rotary valve, where the rotary valve conveys the material to the digester and includes a gas lock that prevents gas from escaping the digester. The digester is operable as one of a dryer and a gasifier depending on its operating parameters.
Abstract:
This disclosure relates to a method for performing high solids saccharification comprising by (a) providing a cellulosic biomass; (b) pretreating the cellulosic biomass in a pretreatment process to produce a pretreated cellulosic biomass; (c) adjusting said pretreated cellulosic biomass to a solids concentration of 6% to 35% w/w and a starting pH of between 5-7; and (d) hydrolyzing the pretreated biomass with at least one aqueous hydrolyzing liquid comprising at least one enzyme selected from the group consisting of a cellulase, a saccharification enzyme, and a combination thereof for a period of time, to hydrolyze at least a part of the pretreated cellulosic biomass to a cellulosic hydrolysate, said cellulosic hydrolysate comprising fermentable sugars.
Abstract:
A feed system for a comminuted cellulosic material including: a chip bin having an upper chip inlet, an interior chamber oriented generally vertically and a lower discharge port; at least one liquor inlet to the chip bin to inject liquor in the chip bin, wherein the chip bin retains sufficient liquor and chips within the interior chamber to create a hydraulic pressure on the chips at the lower discharge port; a generally horizontally oriented chip conveyor or tube coupled to the lower discharge port to receive the chips and liquor from the bin under the hydraulic pressure, wherein the conveyor or tube includes liquor injectors which inject liquor into the chips and the conveyor or tube, and a high pressure transfer device coupled to a discharge of the conveyor or tube to receive the chips and liquor, whereby the hydraulic pressure of the chips and liquor at the discharge of the chip bin is sufficient to feed the chips and liquor to the high pressure transfer device.