Abstract:
The present invention relates to an N-terminal amino acid-modified insulinotropic peptide having a high activity, and to a pharmaceutical composition comprising the same. The insulinotropic peptide derivatives according to the present invention exhibit therapeutic effects, which are not observed in native and other insulinotropic peptide analogs. Therefore, the insulinotropic peptide derivatives and the pharmaceutical composition comprising the same according to the present invention can be effectively provided for the treatment of the diseases.
Abstract:
Disclosed is a liquid formulation of long-acting human growth hormone (hGH) conjugate, free of albumin, which can guarantee the stability of the long-acting hGH conjugate when stored over a long period of time, wherein the long-acting human growth hormone conjugate includes a human growth hormone linked to an immunoglobulin Fc region, and has a prolonged in vivo stability compared to the native form. The liquid formulation of hGH conjugate including a pH 5.0˜6.0 buffer, a sugar alcohol, a salt and a non-ionic surfactant is free of human serum albumin and other hazardous factors which are potentially contaminated with viruses, and can provide excellent storage stability customized for a long-acting hGH conjugate composed of an hGH polypeptide and an immunoglobulin Fc region which has higher molecular weight and in vivo durability, compared to the native.
Abstract:
Disclosed is a liquid formulation of long-acting human growth hormone (hGH) conjugate, free of albumin, which can guarantee the stability of the long-acting hGH conjugate when stored over a long period of time, wherein the long-acting human growth hormone conjugate includes a human growth hormone linked to an immunoglobulin Fc region, and has a prolonged in vivo stability compared to the native form. The liquid formulation of hGH conjugate including a pH 5.0˜6.0 buffer, a sugar alcohol, a salt and a non-ionic surfactant is free of human serum albumin and other hazardous factors which are potentially contaminated with viruses, and can provide excellent storage stability customized for a long-acting hGH conjugate composed of an hGH polypeptide and an immunoglobulin Fc region which has higher molecular weight and in vivo durability, compared to the native.
Abstract:
Disclosed is a liquid formulation in which a long-acting INFα conjugate that has improved in vivo duration and stability can be stored stably for a long period of time. It comprises a stabilizer comprising a buffer, a sugar alcohol, a non-ionic surfactant and an isotonic agent. Being free of human serum albumin and other potential factors harmful to the body, the liquid formulation is free of concerns about viral infections and guarantees excellent storage stability to long-acting INFα conjugates.
Abstract:
Disclosed is a liquid formulation of long-acting human growth hormone (hGH) conjugate, free of albumin, which can guarantee the stability of the long-acting hGH conjugate when stored over a long period of time, wherein the long-acting human growth hormone conjugate includes a human growth hormone linked to an immunoglobulin Fc region, and has a prolonged in vivo stability compared to the native form. The liquid formulation of hGH conjugate including a pH 5.0˜6.0 buffer, a sugar alcohol, a salt and a non-ionic surfactant is free of human serum albumin and other hazardous factors which are potentially contaminated with viruses, and can provide excellent storage stability customized for a long-acting hGH conjugate composed of an hGH polypeptide and an immunoglobulin Fc region which has higher molecular weight and in vivo durability, compared to the native.
Abstract:
Disclosed is a liquid formulation which allows long-acting EPO conjugates, that have improved in vivo duration and stability, to be stable when stored for a long period of time. It comprises a stabilizer composition characterized by buffer and mannitol. Being free of human serum albumin and other potential factors harmful to the body, the liquid formulation is free of concerns about viral infections and guarantees excellent storage stability to long-acting EPO conjugates.
Abstract:
A protein conjugate having a prolonged in vivo half-life of a physiological activity, comprising i) a physiologically active polypeptide, ii) a non-peptidic polymer, and iii) an immunoglobulin, is useful for the development of a polypeptide drug due to the enhanced in vivo stability and prolonged half-life in blood, while reducing the possibility of inducing an immune response.
Abstract:
A protein conjugate having a prolonged in vivo half-life of a physiological activity, comprising i) a physiologically active polypeptide, ii) a biocompatible non-peptidic polymer, and iii) an immunoglobulin, is useful for the development of a peptide drug due to the enhanced in vivo stability and prolonged half-life in blood, while reducing the possibility of inducing an immune response.