Abstract:
A sensitive, compact detector measures total reactive nitrogen (NOy), as well as NO 2 , NO, and O 3 . In all channels, NO 2 is directly detected by laser diode based cavity ring-down spectroscopy (CRDS) at 405 nm. Ambient O 3 is converted to NO 2 in excess NO for the O 3 measurement channel. Likewise, ambient NO is converted to NO 2 in excess O 3 . Ambient NO y is thermally dissociated at 700C to form NO 2 or NO in a heated quartz inlet. Any NO present in ambient air or formed from thermal dissociation of other reactive nitrogen compounds is converted to NO 2 in excess O 3 after the thermal converter. The precision and accuracy of this instrument make it a versatile alternative to standard chemiluminescence-based NO y instruments.
Abstract:
A method and apparatus for irradiating a specimen with a beam of radiation are provided. The method comprises the steps of providing an integrating sphere, a radiation source radiatively communicating with the sphere, and a specimen, the integrating sphere radiatively communicating with the specimen through an aperture in the sphere. The apparatus comprises a radiation source, an integrating sphere in radiative communication with the radiation source, and a specimen holder in radiative communication with the integrating sphere. The disclosed apparatus and method allow the irradiance of a beam of radiation impinging on the specimen to be maintained at a uniform level across the width of the beam to allow quantitative specimen evaluation.
Abstract:
The present invention is a unique combination and physical packaging of low power COTS electronics, real-time operating system, and custom firmware that relays data, messages, and GPS position through the Iridium Short Burst Data (SBD) satellite system. It is a data collector, processor, transmitter, location reporting, and data storage device that provides bi-directional satellite communications anywhere in the world. The combination is very low power and economical as compared to other devices. It can be used for many unattended remote data collection and reporting needs. The smart module may be used in measuring and reporting remote marine data for marine weather analysis, forecasts, and warnings.
Abstract:
The present invention relates to a magnetic resonance structure with a cavity or a reserved space that provides contrast and the additional ability to frequency-shift the spectral signature of the NMR-susceptible nuclei such as water protons by a discrete and controllable characteristic frequency shift that is unique to each MRS design. The invention also relates to nearly uniform solid magnetic resonance T2* contrast agents that have a significantly higher magnetic moment compared to similarly-sized existing MRI contrast agents.
Abstract:
The present invention relates to a magnetic resonance structure with a cavity or a reserved space that provides contrast and the additional ability to frequency-shift the spectral signature of the NMR-susceptible nuclei such as water protons by a discrete and controllable characteristic frequency shift that is unique to each MRS design. The invention also relates to nearly uniform solid magnetic resonance T2* contrast agents that have a significantly higher magnetic moment compared to similarly-sized existing MRI contrast agents. The invention also relates to a magnetic resonance sensor that alters it shape in response to a condition of an environment such that the condition may be detected.
Abstract:
The present invention relates to a magnetic resonance structure with a cavity or a reserved space that provides contrast and the additional ability to frequency-shift the spectral signature of the NMR-susceptible nuclei such as water protons by a discrete and controllable characteristic frequency shift that is unique to each MRS design. The invention also relates to nearly uniform solid magnetic resonance T2* contrast agents that have a significantly higher magnetic moment compared to similarly-sized existing MRI contrast agents.
Abstract:
The present invention relates to magnetic contrast structures for magnetic resonance imaging, and methods of their use. The contrast structures include magnetic materials arranged as a pair of disk-shaped magnetic components with a space between a circular surface of each disk shape, or a tubular magnetic structure, a substantially cylindrical magnetic structure, a substantially spherical shell-formed magnetic structure, or a substantially ellipsoidal shell-formed structure, each defining a hollow region therein. The space and/or hollow region in the contrast structure creates a spatially extended region contained within a near-field region of the contrast structure over which an applied magnetic field results in a homogeneous field, such that nuclear magnetic moments of a second material when arranged within said spatially extended region precess at a characteristic Larmor frequency, whereby the contrast structure is adapted to emit a characteristic magnetic resonance signal of the magnetic material.
Abstract:
Embodiments of the present invention relates to a system for measuring trace species in a sample gas. The present invention uses an open-path configuration including an optical cell with mirrors at each end, a long slotted rod with holes in the end for an optical bean to pass through, and a slotted tube surrounding the slotted rod such that air can pass through the rod in a transverse direction when the slots are aligned. Embodiments of the present invention further includes a flow configuration for purging sample gas from the optical cell, and cleaning mirrors, with calibrated or zero air through inlets in front of each mirror.
Abstract:
The present invention relates to a magnetic resonance structure with a cavity or a reserved space that provides contrast and the additional ability to frequency-shift the spectral signature of the NMR-susceptible nuclei such as water protons by a discrete and controllable characteristic frequency shift that is unique to each MRS design. The invention also relates to nearly uniform solid magnetic resonance T2* contrast agents that have a significantly higher magnetic moment compared to similarly-sized existing MRI contrast agents.
Abstract:
A feeder for larval and juvenile fishes is capable of delivering a small (ca. 15 mg) precise dose of microparticulate (ca. 100 μm diameter) feed to selected locations, via pneumatic conveyance and control. A source of low-pressure dry gas is used to blow microparticulate feed through a manifold and into a selected one of a number of tubes. A terminal valve at the end of the tube is selectively activated to send the feed to a selected tank or pond. When not in use, the feeder is sealed, and the feed protected from moisture and ambient oxygen.