Abstract:
The present invention relates to a method for producing a thin single crystal silicon having large surface area, and particularly relates to a method for producing a silicon micro and nanostructure on a silicon substrate (or wafer) and lifting off the silicon micro and nanostructure from the silicon substrate (or wafer) by metal-assisted etching. In this method, a thin single crystal silicon is produced in the simple processes of lifting off and transferring the silicon micro and nanostructure from the substrate by steps of depositing metal catalyst on the silicon wafer, vertically etching the substrate, laterally etching the substrate. And then, the surface of the substrate is processed, for example planarizing the surface of the substrate, to recycle the substrate for repeatedly producing thin single crystal silicons. Therefore, the substrate can be fully utilized, the purpose of decreasing the cost can be achieved and the application can be increased.
Abstract:
A fabrication method of carbon nanotube field emission cathode is described as follows. Firstly, a composite plating solution including an electroless metal plating solution and a carbon nanotube powder disposed therein is provided. Then, a substrate is provided. The substrate is disposed in the composite plating solution so that an electroless composite plating process for forming a composite material layer on a surface of the substrate is performed. The composite material layer includes a carbon nanotube powder and a metal layer wrapping the carbon nanotube powder.
Abstract:
A method of manufacturing an anti-counterfeit ink is provided. A tungsten oxide nanowire is provided. A hydrophilic treatment is performed to the tungsten oxide nanowire to form a tungsten oxide nanowire with hydrophilicity. The tungsten oxide nanowire with hydrophilicity and an ink are mixed to form an anti-counterfeit ink.
Abstract:
A method of manufacturing an anti-counterfeit ink is provided. A tungsten oxide nanowire is provided. A hydrophilic treatment is performed to the tungsten oxide nanowire to form a tungsten oxide nanowire with hydrophilicity. The tungsten oxide nanowire with hydrophilicity and an ink are mixed to form an anti-counterfeit ink.