Abstract:
The present invention relates to a method for producing a protein of interest containing one or more disulfide bonds in its native state. The method comprises that a prokaryotic host cell is genetically engineered to express the protein of interest and a sulfhydryl oxidase in the cytoplasm of the host cell. The protein of interest is formed in a soluble form and contains disulfide bonds due to the presence of the sulfhydryl oxidase in the cytoplasm of said host cell. The present invention relates also to a prokaryotic host cell and a vector system for producing a protein of interest containing natively folded disulfide bonds.
Abstract:
It is an aim of the present invention to provide inhibitors of human diphtheria toxin-like ADP-ribosyltransferases, such as ARTD10, for use as a medicine. It is another aim of the invention to provide compounds for use as human mono-ADP-ribosyltransferase (mARTD) inhibitors in vitro. In the present invention, it has been discovered that human ARTD10, which belongs to an enzyme family linked to cancer biology, can be specifically inhibited by the benzamide comprising compounds disclosed in the invention, such as 4,4′-oxydibenzamide.
Abstract:
The present invention discloses a mechanism to initiate, establish, and maintain relay connectivity in a SmartBAN network while maintaining uninterrupted operations within the network. The present invention comprises the aspects of identifying and notifying an isolated node, initiating and establishing relay connectivity, maintaining the relay connectivity, and ending the relay connectivity when this is desired by either a hub, the isolated node or the nominated relay node. Some new frame formats comprising several new Information Units are also defined.
Abstract:
The present invention relates to compounds of formula (I), tautomers, stereoisomers, pharmaceutically acceptable salts and pro-drugs thereof, to processes for their preparation, to pharmaceutical compositions containing such compounds and to their use in therapy wherein a dashed line indicates an optional bond; X represents: a 5- or 6-membered, unsaturated heterocyclic group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), C1-6 alkoxy (e.g. C1-3 alkoxy), —CN, —NO2, —N(R)2, and —SO2R (where each R is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl); a C3-5 cycloalkyl group optionally substituted by one or more (e.g. 1 or 2) substituents independently selected from C1-6 alkyl (preferably C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); or an aryl group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); Y represents: an aryl or heteroaryl group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); a 5- or 6-membered, saturated heterocyclic group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from C1-6 alkyl (preferably C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); or a C3-6 cycloalkyl group optionally substituted by one or more (e.g. 1 or 2) substituents independently selected from C1-6 alkyl (preferably C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); and Z represents: an aryl group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), C1-6 alkoxy (e.g. C1-3 alkoxy), —CN, —NO2, —N(R)2, and —SO2R (where each R is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl); or an unsaturated, 5- to 10-membered mono- or bicyclic heterocyclic group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), C1-6 alkoxy (e.g. C1-3 alkoxy), —CN, —NO2, —N(R)2, and —SO2R (where each R is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl). These compounds find particular use in the treatment and/or prevention of a disease or disorder responsive to inhibition of tankyrase 1 and/or 2, for example a disorder which is mediated by tankyrase 1 and/or 2 such as cancer.
Abstract:
It is an aim of the present invention to provide inhibitors of human diphtheria toxin-like ADP-ribosyltransferases, such as ARTD10, for use as a medicine. It is another aim of the invention to provide compounds for use as human mono-ADP-ribosyltransferase (mARTD) inhibitors in vitro. In the present invention, it has been discovered that human ARTD10, which belongs to an enzyme family linked to cancer biology, can be specifically inhibited by the benzamide comprising compounds disclosed in the invention, such as 4,4′-oxydibenzamide.
Abstract:
It is an aim of the present invention to provide inhibitors of human diphtheria toxin-like ADP-ribosyltransferases, such as ARTD10, for use as a medicine. It is another aim of the invention to provide compounds for use as human mono-ADP-ribosyltransferase (mARTD) inhibitors in vitro. In the present invention, it has been discovered that human ARTD10, which belongs to an enzyme family linked to cancer biology, can be specifically inhibited by the benzamide comprising compounds disclosed in the invention, such as 4,4′-oxydibenzamide.
Abstract:
An assessment method is disclosed to determine at least one of macro-topology, milli-topology, micro-topology and nano-topology of at least one interface of at least two media using topology of the interface. Topology information of the interface is processed by performing segmentation of volume information of the obtained information from background information of the obtained information. Reference surface information is generated and information on voids is obtained and analyzed to provide multivalued surface shape information. Quantitative mapping of the information on voids is performed using the multivalued surface shape information for determining at least one of macro-topology, milli-topology, micro-topology and nano-topology of the interface.
Abstract:
The present invention relates to a method for producing a protein of interest containing one or more disulfide bonds in its native state. The method comprises that a prokaryotic host cell is genetically engineered to express the protein of interest and a sulfhydryl oxidase in the cytoplasm of the host cell. The protein of interest is formed in a soluble form and contains disulfide bonds due to the presence of the sulfhydryl oxidase in the cytoplasm of said host cell. The present invention relates also to a prokaryotic host cell and a vector system for producing a protein of interest containing natively folded disulfide bonds.
Abstract:
The present invention relates to compounds of general formula (I), tautomers, stereoisomers, N-oxides, pharmaceutically acceptable salts and pro-drug thereof, to processes for their preparation, to pharmaceutical compositions containing such compounds and to their use in therapy: wherein: a dashed line indicates an optional bond; X represents: a 5- or 6-membered, unsaturated heterocyclic group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), C1-6 alkoxy (e.g. C1-3 alkoxy), -CN, -NO2, -N(R)2, and -SO2R (where each R is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl); a C3-5 cycloalkyl group optionally substituted by one or more (e.g. 1 or 2) substituents independently selected from C1-6 alkyl (preferably C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); or an aryl group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); Y represents: an aryl or heteroaryl group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); a 5- or 6-membered, saturated heterocyclic group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from C1-6 alkyl (preferably C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); or a C3-6 cycloalkyl group optionally substituted by one or more (e.g. 1 or 2) substituents independently selected from C1-6 alkyl (preferably C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); and Z represents: an aryl group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), C1-6 alkoxy (e.g. C1-3 alkoxy), -CN, -NO2, -OH, -N(R' )2 (where each R1 is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl), -SO2R2 (where R2 is H or C1-6 alkyl, e.g. H or C1-3 alkyl), -SO2N(R3)2 (where each R3 is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl), and -C(0)N(R4)2 (where each R4 is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl, or wherein both R4 groups, together with the intervening nitrogen atom, form a 3 to 6 membered saturated heterocyclic ring); or an unsaturated, 5- to 10-membered mono- or bicyclic heterocyclic group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), C1-6 alkoxy (e.g. C1-3 alkoxy), -CN, -NO2, -OH, -N(R')2 (where each R1 is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl), -SO2R2 (where R2 is H or C1-6 alkyl, e.g. H or C1-3 alkyl), -SO2N(R3)2 (where each R3 is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl), and -C(O)N(R4)2 (where each R4 is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl, or wherein both R4 groups, together with the intervening nitrogen atom, form a 3 to 6 membered saturated heterocyclic ring); with the proviso: that when the compound is other than an N-oxide of formula (I), Z must be substituted by at least one substituent selected from -OH, -N(R3)2, -SO2N(R3)2 and -C(O)N(R4)2, preferably by at least one substituent selected from -OH, -SO2N(R3)2 and -C(O)N(R4)2. These compounds find particular use in the treatment and/or prevention of a disease or disorder responsive to inhibition of tankyrase 1 and/or 2, for example a disorder which is mediated by tankyrase 1 and/or 2 such as cancer.