Abstract:
FinFETS and methods for making FinFETs with a recessed stress liner. A method includes providing an SOI substrate with fins, forming a gate over the fins, forming an off-set spacer on the gate, epitaxially growing a film to merge the fins, depositing a dummy spacer around the gate, and recessing the merged epi film. Silicide is then formed on the recessed merged epi film followed by deposition of a stress liner film over the FinFET. By using a recessed merged epi process, a MOSFET with a vertical silicide (i.e. perpendicular to the substrate) can be formed. The perpendicular silicide improves spreading resistance.
Abstract:
A structure comprises first and at least second fin structures are formed. Each of the first and at least second fin structures has a vertically oriented semiconductor body. The vertically oriented semiconductor body is comprised of vertical surfaces. A doped region in each of the first and at least second fin structures is comprised of a concentration of dopant ions present in the semiconductor body to form a first resistor and at least a second resistor, and a pair of merged fins formed on outer portions of the doped regions of the first and at least second fin structures. The pair of merged fins is electrically connected so that the first and at least second resistors are electrically connected in parallel with each other.
Abstract:
In one embodiment a method is provided that includes providing a structure including a semiconductor substrate (12) having at least one device region (14) located therein, and a doped semiconductor layer located on an upper surface of the semiconductor substrate in the at least one device region. After providing the structure, a sacrificial gate region (28) having a spacer (34) located on sidewalls thereof is formed on an upper surface of the doped semiconductor layer. A planarizing dielectric material (36) is then formed and the sacrificial gate region (28) is removed to form an opening (38) that exposes a portion of the doped semiconductor layer. The opening is extended to an upper surface of the semiconductor substrate (20) and then an anneal is performed that causes outdiffusion of dopant from remaining portions of the doped semiconductor layer forming a source region (40) and a drain region (42) in portions of the semiconductor substrate that are located beneath the remaining portions of the doped semiconductor layer. A high k gate dielectric (46) and a metal gate (48) are then formed into the extended opening.
Abstract:
In one embodiment a method is provided that includes providing a structure including a semiconductor substrate (12) having at least one device region (14) located therein, and a doped semiconductor layer located on an upper surface of the semiconductor substrate in the at least one device region. After providing the structure, a sacrificial gate region (28) having a spacer (34) located on sidewalls thereof is formed on an upper surface of the doped semiconductor layer. A planarizing dielectric material (36) is then formed and the sacrificial gate region (28) is removed to form an opening (38) that exposes a portion of the doped semiconductor layer. The opening is extended to an upper surface of the semiconductor substrate (20) and then an anneal is performed that causes outdiffusion of dopant from remaining portions of the doped semiconductor layer forming a source region (40) and a drain region (42) in portions of the semiconductor substrate that are located beneath the remaining portions of the doped semiconductor layer. A high k gate dielectric (46) and a metal gate (48) are then formed into the extended opening.